mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Ajout Augmented_datasetV2+trainUDA
This commit is contained in:
parent
a859db65c4
commit
48c3925d74
2 changed files with 114 additions and 14 deletions
|
@ -66,10 +66,10 @@ if __name__ == "__main__":
|
|||
|
||||
tasks={
|
||||
#'classic',
|
||||
#'aug_dataset',
|
||||
'aug_model'
|
||||
'aug_dataset',
|
||||
#'aug_model'
|
||||
}
|
||||
n_inner_iter = 0
|
||||
n_inner_iter = 1
|
||||
epochs = 150
|
||||
dataug_epoch_start=0
|
||||
|
||||
|
@ -108,19 +108,34 @@ if __name__ == "__main__":
|
|||
|
||||
t0 = time.process_time()
|
||||
|
||||
data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
|
||||
data_train_aug.augement_data(aug_copy=30)
|
||||
print(data_train_aug)
|
||||
dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True)
|
||||
#data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
|
||||
#data_train_aug.augement_data(aug_copy=30)
|
||||
#print(data_train_aug)
|
||||
#dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True)
|
||||
|
||||
xs, ys = next(iter(dl_train))
|
||||
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
|
||||
#xs, ys = next(iter(dl_train))
|
||||
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
|
||||
|
||||
#model = model.to(device)
|
||||
|
||||
#print("{} on {} for {} epochs".format(str(model), device_name, epochs))
|
||||
#log= train_classic(model=model, epochs=epochs, print_freq=10)
|
||||
##log= train_classic_higher(model=model, epochs=epochs)
|
||||
|
||||
data_train_aug = AugmentedDatasetV2("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
|
||||
data_train_aug.augement_data(aug_copy=10)
|
||||
print(data_train_aug)
|
||||
unsup_ratio = 5
|
||||
dl_unsup = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE*unsup_ratio, shuffle=True)
|
||||
|
||||
unsup_xs, sup_xs, ys = next(iter(dl_unsup))
|
||||
viz_sample_data(imgs=sup_xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
|
||||
viz_sample_data(imgs=unsup_xs, labels=ys, fig_name='samples/data_sample_{}_unsup'.format(str(data_train_aug)))
|
||||
|
||||
model = model.to(device)
|
||||
|
||||
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
|
||||
log= train_classic(model=model, epochs=epochs, print_freq=10)
|
||||
#log= train_classic_higher(model=model, epochs=epochs)
|
||||
log= train_UDA(model=model, dl_unsup=dl_unsup, epochs=epochs, print_freq=10)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
|
@ -145,11 +160,11 @@ if __name__ == "__main__":
|
|||
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), model).to(device)
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.0, fixed_prob=True, fixed_mag=True, shared_mag=True), model).to(device)
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None)
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=False, loss_patience=None)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
|
@ -157,7 +172,7 @@ if __name__ == "__main__":
|
|||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it (KLdiv)".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||
with open("res/log/%s.json" % filename, "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
|
|
|
@ -305,6 +305,91 @@ def train_classic_tests(model, epochs=1):
|
|||
print("Copy ", countcopy)
|
||||
return log
|
||||
|
||||
def train_UDA(model, dl_unsup, epochs=1, print_freq=1):
|
||||
|
||||
device = next(model.parameters()).device
|
||||
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
|
||||
|
||||
model.train()
|
||||
dl_val_it = iter(dl_val)
|
||||
dl_unsup_it =iter(dl_unsup)
|
||||
log = []
|
||||
for epoch in range(epochs):
|
||||
#print_torch_mem("Start epoch")
|
||||
t0 = time.process_time()
|
||||
for i, (features, labels) in enumerate(dl_train):
|
||||
#print_torch_mem("Start iter")
|
||||
features,labels = features.to(device), labels.to(device)
|
||||
|
||||
optim.zero_grad()
|
||||
#Supervised
|
||||
logits = model.forward(features)
|
||||
pred = F.log_softmax(logits, dim=1)
|
||||
sup_loss = F.cross_entropy(pred,labels)
|
||||
|
||||
#Unsupervised
|
||||
try:
|
||||
aug_xs, origin_xs, ys = next(dl_unsup_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_unsup_it =iter(dl_unsup)
|
||||
aug_xs, origin_xs, ys = next(dl_unsup_it)
|
||||
aug_xs, origin_xs, ys = aug_xs.to(device), origin_xs.to(device), ys.to(device)
|
||||
|
||||
#print(aug_xs.shape, origin_xs.shape, ys.shape)
|
||||
sup_logits = model.forward(origin_xs)
|
||||
unsup_logits = model.forward(aug_xs)
|
||||
|
||||
#print(unsup_logits.shape, sup_logits.shape)
|
||||
log_sup=F.log_softmax(sup_logits, dim=1)
|
||||
log_unsup=F.log_softmax(unsup_logits, dim=1)
|
||||
#KL div w/ logits
|
||||
unsup_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_unsup)
|
||||
unsup_loss=unsup_loss.sum(dim=-1).mean()
|
||||
|
||||
#print(unsup_loss.shape)
|
||||
unsupp_coeff = 1
|
||||
loss = sup_loss + unsup_loss * unsupp_coeff
|
||||
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
#### Tests ####
|
||||
tf = time.process_time()
|
||||
try:
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_val_it = iter(dl_val)
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
|
||||
|
||||
val_loss = F.cross_entropy(model(xs_val), ys_val)
|
||||
accuracy, _ =test(model)
|
||||
model.train()
|
||||
|
||||
#### Print ####
|
||||
if(print_freq and epoch%print_freq==0):
|
||||
print('-'*9)
|
||||
print('Epoch : %d/%d'%(epoch,epochs))
|
||||
print('Time : %.00f'%(tf - t0))
|
||||
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
||||
print('Sup Loss :', sup_loss.item(), '/ unsup_loss :', unsup_loss.item())
|
||||
print('Accuracy :', accuracy)
|
||||
|
||||
#### Log ####
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"param": None,
|
||||
}
|
||||
log.append(data)
|
||||
|
||||
return log
|
||||
|
||||
def run_simple_dataug(inner_it, epochs=1):
|
||||
device = next(model.parameters()).device
|
||||
dl_train_it = iter(dl_train)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue