Ajout Augmented_datasetV2+trainUDA

This commit is contained in:
Harle, Antoine (Contracteur) 2019-12-06 16:54:40 -05:00
parent a859db65c4
commit 48c3925d74
2 changed files with 114 additions and 14 deletions

View file

@ -305,6 +305,91 @@ def train_classic_tests(model, epochs=1):
print("Copy ", countcopy)
return log
def train_UDA(model, dl_unsup, epochs=1, print_freq=1):
device = next(model.parameters()).device
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
model.train()
dl_val_it = iter(dl_val)
dl_unsup_it =iter(dl_unsup)
log = []
for epoch in range(epochs):
#print_torch_mem("Start epoch")
t0 = time.process_time()
for i, (features, labels) in enumerate(dl_train):
#print_torch_mem("Start iter")
features,labels = features.to(device), labels.to(device)
optim.zero_grad()
#Supervised
logits = model.forward(features)
pred = F.log_softmax(logits, dim=1)
sup_loss = F.cross_entropy(pred,labels)
#Unsupervised
try:
aug_xs, origin_xs, ys = next(dl_unsup_it)
except StopIteration: #Fin epoch val
dl_unsup_it =iter(dl_unsup)
aug_xs, origin_xs, ys = next(dl_unsup_it)
aug_xs, origin_xs, ys = aug_xs.to(device), origin_xs.to(device), ys.to(device)
#print(aug_xs.shape, origin_xs.shape, ys.shape)
sup_logits = model.forward(origin_xs)
unsup_logits = model.forward(aug_xs)
#print(unsup_logits.shape, sup_logits.shape)
log_sup=F.log_softmax(sup_logits, dim=1)
log_unsup=F.log_softmax(unsup_logits, dim=1)
#KL div w/ logits
unsup_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_unsup)
unsup_loss=unsup_loss.sum(dim=-1).mean()
#print(unsup_loss.shape)
unsupp_coeff = 1
loss = sup_loss + unsup_loss * unsupp_coeff
loss.backward()
optim.step()
#### Tests ####
tf = time.process_time()
try:
xs_val, ys_val = next(dl_val_it)
except StopIteration: #Fin epoch val
dl_val_it = iter(dl_val)
xs_val, ys_val = next(dl_val_it)
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
val_loss = F.cross_entropy(model(xs_val), ys_val)
accuracy, _ =test(model)
model.train()
#### Print ####
if(print_freq and epoch%print_freq==0):
print('-'*9)
print('Epoch : %d/%d'%(epoch,epochs))
print('Time : %.00f'%(tf - t0))
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
print('Sup Loss :', sup_loss.item(), '/ unsup_loss :', unsup_loss.item())
print('Accuracy :', accuracy)
#### Log ####
data={
"epoch": epoch,
"train_loss": loss.item(),
"val_loss": val_loss.item(),
"acc": accuracy,
"time": tf - t0,
"param": None,
}
log.append(data)
return log
def run_simple_dataug(inner_it, epochs=1):
device = next(model.parameters()).device
dl_train_it = iter(dl_train)