mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 20:20:46 +02:00
1er resultats experience TF sequentiels
This commit is contained in:
parent
ddac630548
commit
3cffac9852
2 changed files with 37 additions and 53 deletions
|
@ -1,29 +1,5 @@
|
||||||
from utils import *
|
from utils import *
|
||||||
|
|
||||||
tf_names = [
|
|
||||||
## Geometric TF ##
|
|
||||||
'Identity',
|
|
||||||
'FlipUD',
|
|
||||||
'FlipLR',
|
|
||||||
'Rotate',
|
|
||||||
'TranslateX',
|
|
||||||
'TranslateY',
|
|
||||||
'ShearX',
|
|
||||||
'ShearY',
|
|
||||||
|
|
||||||
## Color TF (Expect image in the range of [0, 1]) ##
|
|
||||||
'Contrast',
|
|
||||||
'Color',
|
|
||||||
'Brightness',
|
|
||||||
'Sharpness',
|
|
||||||
'Posterize',
|
|
||||||
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
|
||||||
|
|
||||||
#Non fonctionnel
|
|
||||||
#'Auto_Contrast', #Pas opti pour des batch (Super lent)
|
|
||||||
#'Equalize',
|
|
||||||
]
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
#### Comparison ####
|
#### Comparison ####
|
||||||
|
@ -44,15 +20,17 @@ if __name__ == "__main__":
|
||||||
#plot_compare(filenames=files, fig_name="res/compare")
|
#plot_compare(filenames=files, fig_name="res/compare")
|
||||||
|
|
||||||
## Acc, Time, Epochs = f(n_tf) ##
|
## Acc, Time, Epochs = f(n_tf) ##
|
||||||
fig_name="res/TF_nb_tests_compare"
|
fig_name="res/TF_seq_tests_compare"
|
||||||
inner_its = [0, 10]
|
inner_its = [0, 10]
|
||||||
dataug_epoch_starts= [0, -1]
|
dataug_epoch_starts= [0]
|
||||||
TF_nb = range(1,14+1)
|
TF_nb = 14 #range(1,14+1)
|
||||||
|
N_seq_TF= [1, 2, 3, 4, 6]
|
||||||
|
|
||||||
fig, ax = plt.subplots(ncols=3, figsize=(30, 8))
|
fig, ax = plt.subplots(ncols=3, figsize=(30, 8))
|
||||||
for in_it in inner_its:
|
for in_it in inner_its:
|
||||||
for dataug in dataug_epoch_starts:
|
for dataug in dataug_epoch_starts:
|
||||||
filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF)-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(n_tf, dataug, in_it) for n_tf in TF_nb]
|
#filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF)-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(n_tf, dataug, in_it) for n_tf in TF_nb]
|
||||||
|
filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(TF_nb, n_tf, dataug, in_it) for n_tf in N_seq_TF]
|
||||||
|
|
||||||
all_data=[]
|
all_data=[]
|
||||||
#legend=""
|
#legend=""
|
||||||
|
@ -62,7 +40,8 @@ if __name__ == "__main__":
|
||||||
data = json.load(json_file)
|
data = json.load(json_file)
|
||||||
all_data.append(data)
|
all_data.append(data)
|
||||||
|
|
||||||
n_tf = [len(x["Param_names"]) for x in all_data]
|
n_tf = N_seq_TF
|
||||||
|
#n_tf = [len(x["Param_names"]) for x in all_data]
|
||||||
acc = [x["Accuracy"] for x in all_data]
|
acc = [x["Accuracy"] for x in all_data]
|
||||||
epochs = [len(x["Log"]) for x in all_data]
|
epochs = [len(x["Log"]) for x in all_data]
|
||||||
time = [x["Time"][0] for x in all_data]
|
time = [x["Time"][0] for x in all_data]
|
||||||
|
|
|
@ -761,7 +761,7 @@ if __name__ == "__main__":
|
||||||
print('-'*9)
|
print('-'*9)
|
||||||
'''
|
'''
|
||||||
#### Augmented Model ####
|
#### Augmented Model ####
|
||||||
#'''
|
'''
|
||||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||||
#tf_dict = TF.TF_dict
|
#tf_dict = TF.TF_dict
|
||||||
aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), LeNet(3,10)).to(device)
|
aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||||
|
@ -770,7 +770,7 @@ if __name__ == "__main__":
|
||||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
|
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
|
||||||
|
|
||||||
####
|
####
|
||||||
plot_res(log, fig_name="res/{}-{} epochs (dataug:{})- {} in_it (SOFT)".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
plot_res(log, fig_name="res/{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
||||||
print('-'*9)
|
print('-'*9)
|
||||||
times = [x["time"] for x in log]
|
times = [x["time"] for x in log]
|
||||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||||
|
@ -779,14 +779,15 @@ if __name__ == "__main__":
|
||||||
json.dump(out, f, indent=True)
|
json.dump(out, f, indent=True)
|
||||||
print('Log :\"',f.name, '\" saved !')
|
print('Log :\"',f.name, '\" saved !')
|
||||||
print('-'*9)
|
print('-'*9)
|
||||||
#'''
|
|
||||||
## TF number tests ##
|
|
||||||
'''
|
'''
|
||||||
|
#### TF number tests ####
|
||||||
|
#'''
|
||||||
res_folder="res/TF_nb_tests/"
|
res_folder="res/TF_nb_tests/"
|
||||||
epochs= 200
|
epochs= 200
|
||||||
inner_its = [0, 10]
|
inner_its = [0, 10]
|
||||||
dataug_epoch_starts= [0, -1]
|
dataug_epoch_starts= [0]
|
||||||
TF_nb = [14] #range(1,len(TF.TF_dict)+1)
|
TF_nb = [len(TF.TF_dict)] #range(1,len(TF.TF_dict)+1)
|
||||||
|
N_seq_TF= [1, 2, 3, 4]
|
||||||
|
|
||||||
try:
|
try:
|
||||||
os.mkdir(res_folder)
|
os.mkdir(res_folder)
|
||||||
|
@ -798,24 +799,28 @@ if __name__ == "__main__":
|
||||||
print("---Starting inner_it", n_inner_iter,"---")
|
print("---Starting inner_it", n_inner_iter,"---")
|
||||||
for dataug_epoch_start in dataug_epoch_starts:
|
for dataug_epoch_start in dataug_epoch_starts:
|
||||||
print("---Starting dataug", dataug_epoch_start,"---")
|
print("---Starting dataug", dataug_epoch_start,"---")
|
||||||
for i in TF_nb:
|
for n_tf in N_seq_TF:
|
||||||
keys = list(TF.TF_dict.keys())[0:i]
|
print("---Starting N_TF", n_tf,"---")
|
||||||
ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
for i in TF_nb:
|
||||||
|
keys = list(TF.TF_dict.keys())[0:i]
|
||||||
|
ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
||||||
|
|
||||||
aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, mix_dist=0.0), LeNet(3,10)).to(device)
|
aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, N_TF=n_tf, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||||
print(str(aug_model), 'on', device_name)
|
print(str(aug_model), 'on', device_name)
|
||||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
|
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
|
||||||
|
|
||||||
|
####
|
||||||
|
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
||||||
|
print('-'*9)
|
||||||
|
times = [x["time"] for x in log]
|
||||||
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||||
|
print(str(aug_model),": acc", out["Accuracy"], "in (ms):", out["Time"][0], "+/-", out["Time"][1])
|
||||||
|
with open(res_folder+"log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f:
|
||||||
|
json.dump(out, f, indent=True)
|
||||||
|
print('Log :\"',f.name, '\" saved !')
|
||||||
|
print('-'*9)
|
||||||
|
|
||||||
|
#'''
|
||||||
|
|
||||||
####
|
|
||||||
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
|
||||||
print('-'*9)
|
|
||||||
times = [x["time"] for x in log]
|
|
||||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
|
||||||
print(str(aug_model),": acc", out["Accuracy"], "in (ms):", out["Time"][0], "+/-", out["Time"][1])
|
|
||||||
with open(res_folder+"log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f:
|
|
||||||
json.dump(out, f, indent=True)
|
|
||||||
print('Log :\"',f.name, '\" saved !')
|
|
||||||
print('-'*9)
|
|
||||||
|
|
||||||
'''
|
|
Loading…
Add table
Add a link
Reference in a new issue