mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
1er resultats experience TF sequentiels
This commit is contained in:
parent
ddac630548
commit
3cffac9852
2 changed files with 37 additions and 53 deletions
|
@ -761,7 +761,7 @@ if __name__ == "__main__":
|
|||
print('-'*9)
|
||||
'''
|
||||
#### Augmented Model ####
|
||||
#'''
|
||||
'''
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
#tf_dict = TF.TF_dict
|
||||
aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||
|
@ -770,7 +770,7 @@ if __name__ == "__main__":
|
|||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
|
||||
|
||||
####
|
||||
plot_res(log, fig_name="res/{}-{} epochs (dataug:{})- {} in_it (SOFT)".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
||||
plot_res(log, fig_name="res/{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
|
@ -779,14 +779,15 @@ if __name__ == "__main__":
|
|||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
print('-'*9)
|
||||
#'''
|
||||
## TF number tests ##
|
||||
'''
|
||||
#### TF number tests ####
|
||||
#'''
|
||||
res_folder="res/TF_nb_tests/"
|
||||
epochs= 200
|
||||
inner_its = [0, 10]
|
||||
dataug_epoch_starts= [0, -1]
|
||||
TF_nb = [14] #range(1,len(TF.TF_dict)+1)
|
||||
dataug_epoch_starts= [0]
|
||||
TF_nb = [len(TF.TF_dict)] #range(1,len(TF.TF_dict)+1)
|
||||
N_seq_TF= [1, 2, 3, 4]
|
||||
|
||||
try:
|
||||
os.mkdir(res_folder)
|
||||
|
@ -798,24 +799,28 @@ if __name__ == "__main__":
|
|||
print("---Starting inner_it", n_inner_iter,"---")
|
||||
for dataug_epoch_start in dataug_epoch_starts:
|
||||
print("---Starting dataug", dataug_epoch_start,"---")
|
||||
for i in TF_nb:
|
||||
keys = list(TF.TF_dict.keys())[0:i]
|
||||
ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
||||
for n_tf in N_seq_TF:
|
||||
print("---Starting N_TF", n_tf,"---")
|
||||
for i in TF_nb:
|
||||
keys = list(TF.TF_dict.keys())[0:i]
|
||||
ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
||||
|
||||
aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||
print(str(aug_model), 'on', device_name)
|
||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
|
||||
aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, N_TF=n_tf, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||
print(str(aug_model), 'on', device_name)
|
||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
|
||||
|
||||
####
|
||||
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in (ms):", out["Time"][0], "+/-", out["Time"][1])
|
||||
with open(res_folder+"log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
print('-'*9)
|
||||
####
|
||||
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in (ms):", out["Time"][0], "+/-", out["Time"][1])
|
||||
with open(res_folder+"log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
print('-'*9)
|
||||
|
||||
'''
|
||||
#'''
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue