Confmat / F1 + Minor fix

This commit is contained in:
Harle, Antoine (Contracteur) 2020-01-31 16:43:10 -05:00
parent 250ce2c3cf
commit 3ccacd0366
5 changed files with 120 additions and 32 deletions

View file

@ -13,7 +13,7 @@ TEST_SIZE = BATCH_SIZE
#TEST_SIZE = 10000 #legerement +Rapide / + Consomation memoire ! #TEST_SIZE = 10000 #legerement +Rapide / + Consomation memoire !
#Wether to download data. #Wether to download data.
download_data=False download_data=True
#Number of worker to use. #Number of worker to use.
num_workers=2 #4 num_workers=2 #4
#Pin GPU memory #Pin GPU memory

View file

@ -814,15 +814,16 @@ class Higher_model(nn.Module):
_name (string): Name of the model. _name (string): Name of the model.
_mods (nn.ModuleDict): Models (Orginial and Higher version). _mods (nn.ModuleDict): Models (Orginial and Higher version).
""" """
def __init__(self, model): def __init__(self, model, model_name=None):
"""Init Higher_model. """Init Higher_model.
Args: Args:
model (nn.Module): Network for which higher gradients can be tracked. model (nn.Module): Network for which higher gradients can be tracked.
model_name (string): Model name. (Default: Class name of model)
""" """
super(Higher_model, self).__init__() super(Higher_model, self).__init__()
self._name = model.__class__.__name__ #model.__str__() self._name = model_name if model_name else model.__class__.__name__ #model.__str__()
self._mods = nn.ModuleDict({ self._mods = nn.ModuleDict({
'original': model, 'original': model,
'functional': higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) 'functional': higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)

View file

@ -1,7 +1,7 @@
""" Script to run experiment on smart augmentation. """ Script to run experiment on smart augmentation.
""" """
import sys
from LeNet import * from LeNet import *
from dataug import * from dataug import *
#from utils import * #from utils import *
@ -79,7 +79,7 @@ if __name__ == "__main__":
} }
#Parameters #Parameters
n_inner_iter = 1 n_inner_iter = 1
epochs = 150 epochs = 2
dataug_epoch_start=0 dataug_epoch_start=0
optim_param={ optim_param={
'Meta':{ 'Meta':{
@ -94,18 +94,21 @@ if __name__ == "__main__":
} }
#Models #Models
model = LeNet(3,10) #model = LeNet(3,10)
#model = ResNet(num_classes=10) #model = ResNet(num_classes=10)
#import torchvision.models as models import torchvision.models as models
#model=models.resnet18() #model=models.resnet18()
model_name = 'resnet18' #'wide_resnet50_2' #'resnet18' #str(model)
model = getattr(models.resnet, model_name)(pretrained=False)
#### Classic #### #### Classic ####
if 'classic' in tasks: if 'classic' in tasks:
t0 = time.process_time() t0 = time.process_time()
model = model.to(device) model = model.to(device)
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=20) print("{} on {} for {} epochs".format(model_name, device_name, epochs))
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=5)
#log= train_classic_higher(model=model, epochs=epochs) #log= train_classic_higher(model=model, epochs=epochs)
exec_time=time.process_time() - t0 exec_time=time.process_time() - t0
@ -114,12 +117,12 @@ if __name__ == "__main__":
times = [x["time"] for x in log] times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Log": log} out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Log": log}
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs".format(str(model),epochs) filename = "{}-{} epochs".format(model_name,epochs)
with open("../res/log/%s.json" % filename, "w+") as f: with open("../res/log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True) json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !') print('Log :\"',f.name, '\" saved !')
plot_res(log, fig_name="../res/"+filename) #plot_res(log, fig_name="../res/"+filename)
print('Execution Time : %.00f '%(exec_time)) print('Execution Time : %.00f '%(exec_time))
print('-'*9) print('-'*9)
@ -129,8 +132,8 @@ if __name__ == "__main__":
t0 = time.process_time() t0 = time.process_time()
tf_dict = {k: TF.TF_dict[k] for k in tf_names} tf_dict = {k: TF.TF_dict[k] for k in tf_names}
model = Higher_model(model) #run_dist_dataugV3 model = Higher_model(model, model_name) #run_dist_dataugV3
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device) aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device) #aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
@ -139,7 +142,7 @@ if __name__ == "__main__":
inner_it=n_inner_iter, inner_it=n_inner_iter,
dataug_epoch_start=dataug_epoch_start, dataug_epoch_start=dataug_epoch_start,
opt_param=optim_param, opt_param=optim_param,
print_freq=20, print_freq=1,
unsup_loss=1, unsup_loss=1,
hp_opt=False, hp_opt=False,
save_sample_freq=None) save_sample_freq=None)
@ -157,10 +160,12 @@ if __name__ == "__main__":
print('Log :\"',f.name, '\" saved !') print('Log :\"',f.name, '\" saved !')
except: except:
print("Failed to save logs :",f.name) print("Failed to save logs :",f.name)
print(sys.exc_info()[0])
try: try:
plot_resV2(log, fig_name="../res/"+filename, param_names=aug_model.TF_names()) plot_resV2(log, fig_name="../res/"+filename, param_names=aug_model.TF_names())
except: except:
print("Failed to plot res") print("Failed to plot res")
print(sys.exc_info()[0])
print('Execution Time : %.00f '%(exec_time)) print('Execution Time : %.00f '%(exec_time))
print('-'*9) print('-'*9)

View file

@ -10,6 +10,8 @@ import higher
from datasets import * from datasets import *
from utils import * from utils import *
confmat = ConfusionMatrix(num_classes=len(dl_test.dataset.classes))
def test(model): def test(model):
"""Evaluate a model on test data. """Evaluate a model on test data.
@ -17,7 +19,7 @@ def test(model):
model (nn.Module): Model to test. model (nn.Module): Model to test.
Returns: Returns:
(float, Tensor) Returns the accuracy and test loss of the model. (float, Tensor) Returns the accuracy and F1 score of the model.
""" """
device = next(model.parameters()).device device = next(model.parameters()).device
model.eval() model.eval()
@ -30,7 +32,8 @@ def test(model):
correct = 0 correct = 0
total = 0 total = 0
loss = [] #loss = []
confmat.reset()
with torch.no_grad(): with torch.no_grad():
for features, labels in dl_test: for features, labels in dl_test:
features,labels = features.to(device), labels.to(device) features,labels = features.to(device), labels.to(device)
@ -40,11 +43,16 @@ def test(model):
total += labels.size(0) total += labels.size(0)
correct += (predicted == labels).sum().item() correct += (predicted == labels).sum().item()
loss.append(F.cross_entropy(outputs, labels).item()) #loss.append(F.cross_entropy(outputs, labels).item())
confmat.update(labels, predicted)
accuracy = 100 * correct / total accuracy = 100 * correct / total
return accuracy, np.mean(loss) #print(confmat)
#from sklearn.metrics import f1_score
#f1 = f1_score(labels.data.to('cpu'), predicted.data.to('cpu'), average="macro")
return accuracy, confmat.f1_metric(average="macro")
def compute_vaLoss(model, dl_it, dl): def compute_vaLoss(model, dl_it, dl):
"""Evaluate a model on a batch of data. """Evaluate a model on a batch of data.
@ -202,7 +210,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1) print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1)
unsup_loss (float): Proportion of the unsup_loss loss added to the supervised loss. If set to 0, the loss is only computed on augmented inputs. (default: 1) unsup_loss (float): Proportion of the unsup_loss loss added to the supervised loss. If set to 0, the loss is only computed on augmented inputs. (default: 1)
hp_opt (bool): Wether to learn inner optimizer parameters. (default: False) hp_opt (bool): Wether to learn inner optimizer parameters. (default: False)
save_sample_freq (int): Number of epochs between saves of samples of data. If set to None, only one save would be done at the end of the training. (default: None) save_sample_freq (int): Number of epochs between saves of samples of data. If set to None, no sample will be saved. (default: None)
Returns: Returns:
(list) Logs of training. Each items is a dict containing results of an epoch. (list) Logs of training. Each items is a dict containing results of an epoch.
@ -310,7 +318,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
# Test model # Test model
accuracy, test_loss =test(model) accuracy, f1 =test(model)
model.train() model.train()
#### Log #### #### Log ####
@ -320,6 +328,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
"train_loss": loss.item(), "train_loss": loss.item(),
"val_loss": val_loss.item(), "val_loss": val_loss.item(),
"acc": accuracy, "acc": accuracy,
"f1": f1.cpu().numpy().tolist(),
"time": tf - t0, "time": tf - t0,
"param": param, "param": param,
@ -360,15 +369,6 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)), grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
track_higher_grads=high_grad_track) track_higher_grads=high_grad_track)
#Data sample saving
try:
viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch))
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch))
except:
print("Couldn't save finals samples")
pass
return log return log
def run_simple_smartaug(model, opt_param, epochs=1, inner_it=1, print_freq=1, unsup_loss=1): def run_simple_smartaug(model, opt_param, epochs=1, inner_it=1, print_freq=1, unsup_loss=1):

View file

@ -14,6 +14,75 @@ import torch.nn.functional as F
import time import time
class ConfusionMatrix(object):
def __init__(self, num_classes):
self.num_classes = num_classes
self.mat = None
def update(self, a, b):
n = self.num_classes
if self.mat is None:
self.mat = torch.zeros((n, n), dtype=torch.int64, device=a.device)
with torch.no_grad():
k = (a >= 0) & (a < n)
inds = n * a[k].to(torch.int64) + b[k]
self.mat += torch.bincount(inds, minlength=n**2).reshape(n, n)
def reset(self):
if self.mat is not None:
self.mat.zero_()
def compute(self):
h = self.mat.float()
acc_global = torch.diag(h).sum() / h.sum()
acc = torch.diag(h) / h.sum(1)
return acc_global, acc
def f1_metric(self, average=None):
#https://discuss.pytorch.org/t/how-to-get-the-sensitivity-and-specificity-of-a-dataset/39373/6
h = self.mat.float()
TP = torch.diag(h)
TN = []
FP = []
FN = []
for c in range(self.num_classes):
idx = torch.ones(self.num_classes).bool()
idx[c] = 0
# all non-class samples classified as non-class
TN.append(self.mat[idx.nonzero()[:, None], idx.nonzero()].sum()) #conf_matrix[idx[:, None], idx].sum() - conf_matrix[idx, c].sum()
# all non-class samples classified as class
FP.append(self.mat[idx, c].sum())
# all class samples not classified as class
FN.append(self.mat[c, idx].sum())
#print('Class {}\nTP {}, TN {}, FP {}, FN {}'.format(c, TP[c], TN[c], FP[c], FN[c]))
tp = (TP/h.sum(1))#.sum()
tn = (torch.tensor(TN, device=h.device, dtype=torch.float)/h.sum(1))#.sum()
fp = (torch.tensor(FP, device=h.device, dtype=torch.float)/h.sum(1))#.sum()
fn = (torch.tensor(FN, device=h.device, dtype=torch.float)/h.sum(1))#.sum()
if average=="micro":
tp, tn, fp, fn = tp.sum(), tn.sum(), fp.sum(), fn.sum()
epsilon = 1e-7
precision = tp / (tp + fp + epsilon)
recall = tp / (tp + fn + epsilon)
f1 = 2* (precision*recall) / (precision + recall + epsilon)
if average=="macro":
f1=f1.mean()
return f1
def __str__(self):
acc_global, acc = self.compute()
return (
'global correct: {:.1f}\n'
'average row correct: {}').format(
acc_global.item() * 100,
['{:.1f}'.format(i) for i in (acc * 100).tolist()])
def print_graph(PyTorch_obj, fig_name='graph'): def print_graph(PyTorch_obj, fig_name='graph'):
"""Save the computational graph. """Save the computational graph.
@ -42,8 +111,21 @@ def plot_resV2(log, fig_name='res', param_names=None):
ax[0, 0].plot(epochs,[x["val_loss"] for x in log], label='Val') ax[0, 0].plot(epochs,[x["val_loss"] for x in log], label='Val')
ax[0, 0].legend() ax[0, 0].legend()
ax[1, 0].set_title('Acc') ax[1, 0].set_title('Test')
ax[1, 0].plot(epochs,[x["acc"] for x in log]) ax[1, 0].plot(epochs,[x["acc"] for x in log], label='Acc')
if "f1" in log[0].keys():
ax[1, 0].plot(epochs,[x["f1"]*100 for x in log], label='F1')
'''
#print(log[0]["f1"])
if len(log[0]["f1"])==1:
ax[1, 0].plot(epochs,[x["f1"]*100 for x in log], label='F1')
else:
for c in range(len(log[0]["f1"])):
ax[1, 0].plot(epochs,[x["f1"][c]*100 for x in log], label='F1-'+str(c))
'''
ax[1, 0].legend()
if log[0]["param"]!= None: if log[0]["param"]!= None:
if not param_names : param_names = ['P'+str(idx) for idx, _ in enumerate(log[0]["param"])] if not param_names : param_names = ['P'+str(idx) for idx, _ in enumerate(log[0]["param"])]
@ -73,7 +155,7 @@ def plot_resV2(log, fig_name='res', param_names=None):
plt.sca(ax[1, 2]), plt.xticks(rotation=90) plt.sca(ax[1, 2]), plt.xticks(rotation=90)
fig_name = fig_name.replace('.',',') fig_name = fig_name.replace('.',',').replace(',,/','../')
plt.savefig(fig_name, bbox_inches='tight') plt.savefig(fig_name, bbox_inches='tight')
plt.close() plt.close()