mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Initial Commit
This commit is contained in:
commit
3ae3e02e59
44 changed files with 4908 additions and 0 deletions
345
Gradient-Descent-The-Ultimate-Optimizer/hyperopt.py
Normal file
345
Gradient-Descent-The-Ultimate-Optimizer/hyperopt.py
Normal file
|
@ -0,0 +1,345 @@
|
|||
import math
|
||||
import torch
|
||||
import torchvision
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
|
||||
|
||||
class Optimizable():#nn.Module):
|
||||
"""
|
||||
This is the interface for anything that has parameters that need to be
|
||||
optimized, somewhat like torch.nn.Model but with the right plumbing for
|
||||
hyperoptimizability. (Specifically, torch.nn.Model uses the Parameter
|
||||
interface which does not give us enough control about the detachments.)
|
||||
Nominal operation of an Optimizable at the lowest level is as follows:
|
||||
o = MyOptimizable(…)
|
||||
o.initialize()
|
||||
loop {
|
||||
o.begin()
|
||||
o.zero_grad()
|
||||
loss = –compute loss function from parameters–
|
||||
loss.backward()
|
||||
o.adjust()
|
||||
}
|
||||
Optimizables recursively handle updates to their optimiz*ers*.
|
||||
"""
|
||||
#def __init__(self):
|
||||
# super(Optimizable, self).__init__()
|
||||
# self.parameters = nn.Parameter(torch.zeros(()))
|
||||
|
||||
def __init__(self, parameters, optimizer):
|
||||
#super(Optimizable, self).__init__()
|
||||
self.parameters = parameters # a dict mapping names to tensors
|
||||
self.optimizer = optimizer # which must itself be Optimizable!
|
||||
self.all_params_with_gradients = []
|
||||
#self.device = device
|
||||
|
||||
def initialize(self):
|
||||
"""Initialize parameters, e.g. with a Kaiming initializer."""
|
||||
pass
|
||||
|
||||
def begin(self):
|
||||
"""Enable gradient tracking on current parameters."""
|
||||
self.all_params_with_gradients = [] #Reintialisation pour eviter surcharge de la memoire
|
||||
for name, param in self.parameters.items():
|
||||
#for param in self.parameters:
|
||||
param.requires_grad_() # keep gradient information…
|
||||
param.retain_grad() # even if not a leaf…
|
||||
#param.to(self.device)
|
||||
#if param.device == torch.device('cuda:0'):
|
||||
# print(name, param.device)
|
||||
self.all_params_with_gradients.append(param)
|
||||
self.optimizer.begin()
|
||||
|
||||
def zero_grad(self):
|
||||
""" Set all gradients to zero. """
|
||||
for param in self.all_params_with_gradients:
|
||||
#param = param.to(self.device)
|
||||
param.grad = torch.zeros(param.shape, device=param.device)
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
""" Note: at this point you would probably call .backwards() on the loss
|
||||
function. """
|
||||
|
||||
def adjust(self):
|
||||
""" Update parameters """
|
||||
pass
|
||||
|
||||
|
||||
def print_grad_fn(self):
|
||||
self.optimizer.print_grad_fn()
|
||||
for n, p in self.parameters.items():
|
||||
print(n," - ", p.grad_fn)
|
||||
|
||||
def param_grad(self):
|
||||
return self.all_params_with_gradients
|
||||
|
||||
def param(self, param_name):
|
||||
return self.parameters[param_name].item()
|
||||
|
||||
|
||||
class MNIST_FullyConnected(Optimizable):
|
||||
"""
|
||||
A fully-connected NN for the MNIST task. This is Optimizable but not itself
|
||||
an optimizer.
|
||||
"""
|
||||
|
||||
def __init__(self, num_inp, num_hid, num_out, optimizer):
|
||||
parameters = {
|
||||
"w1": torch.zeros(num_inp, num_hid).t(),
|
||||
"b1": torch.zeros(num_hid).t(),
|
||||
"w2": torch.zeros(num_hid, num_out).t(),
|
||||
"b2": torch.zeros(num_out).t(),
|
||||
}
|
||||
super().__init__(parameters, optimizer)
|
||||
|
||||
def initialize(self):
|
||||
nn.init.kaiming_uniform_(self.parameters["w1"], a=math.sqrt(5))
|
||||
nn.init.kaiming_uniform_(self.parameters["w2"], a=math.sqrt(5))
|
||||
self.optimizer.initialize()
|
||||
|
||||
def forward(self, x):
|
||||
"""Compute a prediction."""
|
||||
x = F.linear(x, self.parameters["w1"], self.parameters["b1"])
|
||||
x = torch.tanh(x)
|
||||
x = F.linear(x, self.parameters["w2"], self.parameters["b2"])
|
||||
x = torch.tanh(x)
|
||||
x = F.log_softmax(x, dim=1)
|
||||
return x
|
||||
|
||||
def adjust(self):
|
||||
self.optimizer.adjust(self.parameters)
|
||||
|
||||
def __str__(self):
|
||||
return "mnist / " + str(self.optimizer)
|
||||
|
||||
|
||||
class NoOpOptimizer(Optimizable):#, nn.Module):
|
||||
"""
|
||||
NoOpOptimizer sits on top of a stack, and does not affect what lies below.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
#super(Optimizable, self).__init__()
|
||||
pass
|
||||
|
||||
def initialize(self):
|
||||
pass
|
||||
|
||||
def begin(self):
|
||||
pass
|
||||
|
||||
def zero_grad(self):
|
||||
pass
|
||||
|
||||
def adjust(self, params):
|
||||
pass
|
||||
|
||||
def adjust_val(self, params):
|
||||
pass
|
||||
|
||||
def print_grad_fn(self):
|
||||
pass
|
||||
|
||||
def __str__(self):
|
||||
return "static"
|
||||
|
||||
class Adam(Optimizable):
|
||||
"""
|
||||
A fully hyperoptimizable Adam optimizer
|
||||
"""
|
||||
|
||||
def clamp(x):
|
||||
return (x.tanh() + 1.0) / 2.0
|
||||
|
||||
def unclamp(y):
|
||||
z = y * 2.0 - 1.0
|
||||
return ((1.0 + z) / (1.0 - z)).log() / 2.0
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
alpha=0.001,
|
||||
beta1=0.9,
|
||||
beta2=0.999,
|
||||
log_eps=-8.0,
|
||||
optimizer=NoOpOptimizer(),
|
||||
device = torch.device('cuda')
|
||||
):
|
||||
self.device = device
|
||||
parameters = {
|
||||
"alpha": torch.tensor(alpha, device=self.device),
|
||||
"beta1": Adam.unclamp(torch.tensor(beta1, device=self.device)),
|
||||
"beta2": Adam.unclamp(torch.tensor(beta2, device=self.device)),
|
||||
"log_eps": torch.tensor(log_eps, device=self.device),
|
||||
}
|
||||
super().__init__(parameters, optimizer)
|
||||
self.num_adjustments = 0
|
||||
self.num_adjustments_val = 0
|
||||
self.cache = {}
|
||||
|
||||
for name, param in parameters.items():
|
||||
param.requires_grad_() # keep gradient information…
|
||||
param.retain_grad() # even if not a leaf…
|
||||
#param.to(self.device)
|
||||
#if param.device == torch.device('cuda:0'):
|
||||
# print(name, param.device)
|
||||
|
||||
def adjust(self, params): #Update param d'apprentissage
|
||||
self.num_adjustments += 1
|
||||
self.optimizer.adjust(self.parameters)
|
||||
#print('Adam update')
|
||||
t = self.num_adjustments
|
||||
beta1 = Adam.clamp(self.parameters["beta1"])
|
||||
beta2 = Adam.clamp(self.parameters["beta2"])
|
||||
for name, param in params.items():
|
||||
if name == "mag": continue
|
||||
if name not in self.cache:
|
||||
self.cache[name] = {
|
||||
"m": torch.zeros(param.shape, device=self.device),
|
||||
"v": torch.zeros(param.shape, device=self.device)
|
||||
+ 10.0 ** self.parameters["log_eps"].data
|
||||
# NOTE that we add a little ‘fudge factor' here because sqrt is not
|
||||
# differentiable at exactly zero
|
||||
}
|
||||
#print(name, param.device)
|
||||
g = param.grad.detach()
|
||||
self.cache[name]["m"] = m = (
|
||||
beta1 * self.cache[name]["m"].detach() + (1.0 - beta1) * g
|
||||
)
|
||||
self.cache[name]["v"] = v = (
|
||||
beta2 * self.cache[name]["v"].detach() + (1.0 - beta2) * g * g
|
||||
)
|
||||
self.all_params_with_gradients.append(m)
|
||||
self.all_params_with_gradients.append(v)
|
||||
m_hat = m / (1.0 - beta1 ** float(t))
|
||||
v_hat = v / (1.0 - beta2 ** float(t))
|
||||
dparam = m_hat / (v_hat ** 0.5 + 10.0 ** self.parameters["log_eps"])
|
||||
params[name] = param.detach() - self.parameters["alpha"] * dparam
|
||||
#print(name)
|
||||
|
||||
def adjust_val(self, params): #Update param Transformations
|
||||
self.num_adjustments_val += 1
|
||||
self.optimizer.adjust_val(self.parameters)
|
||||
#print('Adam update')
|
||||
t = self.num_adjustments_val
|
||||
beta1 = Adam.clamp(self.parameters["beta1"])
|
||||
beta2 = Adam.clamp(self.parameters["beta2"])
|
||||
for name, param in params.items():
|
||||
if name != "mag": continue
|
||||
if name not in self.cache:
|
||||
self.cache[name] = {
|
||||
"m": torch.zeros(param.shape, device=self.device),
|
||||
"v": torch.zeros(param.shape, device=self.device)
|
||||
+ 10.0 ** self.parameters["log_eps"].data
|
||||
# NOTE that we add a little ‘fudge factor' here because sqrt is not
|
||||
# differentiable at exactly zero
|
||||
}
|
||||
#print(name, param.device)
|
||||
g = param.grad.detach()
|
||||
self.cache[name]["m"] = m = (
|
||||
beta1 * self.cache[name]["m"].detach() + (1.0 - beta1) * g
|
||||
)
|
||||
self.cache[name]["v"] = v = (
|
||||
beta2 * self.cache[name]["v"].detach() + (1.0 - beta2) * g * g
|
||||
)
|
||||
self.all_params_with_gradients.append(m)
|
||||
self.all_params_with_gradients.append(v)
|
||||
m_hat = m / (1.0 - beta1 ** float(t))
|
||||
v_hat = v / (1.0 - beta2 ** float(t))
|
||||
dparam = m_hat / (v_hat ** 0.5 + 10.0 ** self.parameters["log_eps"])
|
||||
params[name] = param.detach() - self.parameters["alpha"] * dparam
|
||||
#print(name)
|
||||
|
||||
def __str__(self):
|
||||
return "adam(" + str(self.parameters) + ") / " + str(self.optimizer)
|
||||
'''
|
||||
class SGD(Optimizable):
|
||||
"""
|
||||
A hyperoptimizable SGD
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=0.01, optimizer=NoOpOptimizer()):
|
||||
parameters = {"alpha": torch.tensor(alpha)}
|
||||
super().__init__(parameters, optimizer)
|
||||
|
||||
def adjust(self, params):
|
||||
self.optimizer.adjust(self.parameters)
|
||||
for name, param in params.items():
|
||||
g = param.grad.detach()
|
||||
params[name] = param.detach() - g * self.parameters["alpha"]
|
||||
|
||||
def __str__(self):
|
||||
return "sgd(%f) / " % self.parameters["alpha"] + str(self.optimizer)
|
||||
|
||||
class SGDPerParam(Optimizable):
|
||||
"""
|
||||
Like above, but can be taught a separate step size for each parameter it
|
||||
tunes.
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=0.01, params=[], optimizer=NoOpOptimizer()):
|
||||
parameters = {name + "_alpha": torch.tensor(alpha) for name in params}
|
||||
super().__init__(parameters, optimizer)
|
||||
|
||||
def adjust(self, params):
|
||||
self.optimizer.adjust(self.parameters)
|
||||
for name, param in params.items():
|
||||
g = param.grad.detach()
|
||||
params[name] = param.detach() - g * self.parameters[name + "_alpha"]
|
||||
|
||||
def __str__(self):
|
||||
return "sgd(%s) / " % str(
|
||||
{k: t.item() for k, t in self.parameters.items()}
|
||||
) + str(self.optimizer)
|
||||
'''
|
||||
'''
|
||||
class AdamBaydin(Optimizable):
|
||||
""" Same as above, but only optimizes the learning rate, treating the
|
||||
remaining hyperparameters as constants. """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
alpha=0.001,
|
||||
beta1=0.9,
|
||||
beta2=0.999,
|
||||
log_eps=-8.0,
|
||||
optimizer=NoOpOptimizer(),
|
||||
):
|
||||
parameters = {"alpha": torch.tensor(alpha)}
|
||||
self.beta1 = beta1
|
||||
self.beta2 = beta2
|
||||
self.log_eps = log_eps
|
||||
super().__init__(parameters, optimizer)
|
||||
self.num_adjustments = 0
|
||||
self.cache = {}
|
||||
|
||||
def adjust(self, params):
|
||||
self.num_adjustments += 1
|
||||
self.optimizer.adjust(self.parameters)
|
||||
t = self.num_adjustments
|
||||
beta1 = self.beta1
|
||||
beta2 = self.beta2
|
||||
for name, param in params.items():
|
||||
if name not in self.cache:
|
||||
self.cache[name] = {
|
||||
"m": torch.zeros(param.shape),
|
||||
"v": torch.zeros(param.shape) + 10.0 ** self.log_eps,
|
||||
}
|
||||
g = param.grad.detach()
|
||||
self.cache[name]["m"] = m = (
|
||||
beta1 * self.cache[name]["m"].detach() + (1.0 - beta1) * g
|
||||
)
|
||||
self.cache[name]["v"] = v = (
|
||||
beta2 * self.cache[name]["v"].detach() + (1.0 - beta2) * g * g
|
||||
)
|
||||
self.all_params_with_gradients.append(m)
|
||||
self.all_params_with_gradients.append(v)
|
||||
m_hat = m / (1.0 - beta1 ** float(t))
|
||||
v_hat = v / (1.0 - beta2 ** float(t))
|
||||
dparam = m_hat / (v_hat ** 0.5 + 10.0 ** self.log_eps)
|
||||
params[name] = param.detach() - self.parameters["alpha"] * dparam
|
||||
|
||||
def __str__(self):
|
||||
return "adam(" + str(self.parameters) + ") / " + str(self.optimizer)
|
||||
'''
|
Loading…
Add table
Add a link
Reference in a new issue