mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Cross Validation splits + New mesure process time (train utils)
This commit is contained in:
parent
bce882de38
commit
385bc9977c
3 changed files with 51 additions and 30 deletions
|
@ -150,7 +150,7 @@ def train_classic(model, opt_param, epochs=1, print_freq=1):
|
|||
log = []
|
||||
for epoch in range(epochs):
|
||||
#print_torch_mem("Start epoch")
|
||||
t0 = time.process_time()
|
||||
t0 = time.perf_counter()
|
||||
for i, (features, labels) in enumerate(dl_train):
|
||||
#viz_sample_data(imgs=features, labels=labels, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch))
|
||||
#print_torch_mem("Start iter")
|
||||
|
@ -164,7 +164,7 @@ def train_classic(model, opt_param, epochs=1, print_freq=1):
|
|||
optim.step()
|
||||
|
||||
#### Tests ####
|
||||
tf = time.process_time()
|
||||
tf = time.perf_counter()
|
||||
|
||||
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
|
||||
accuracy, f1 =test(model)
|
||||
|
@ -176,8 +176,8 @@ def train_classic(model, opt_param, epochs=1, print_freq=1):
|
|||
print('Epoch : %d/%d'%(epoch,epochs))
|
||||
print('Time : %.00f'%(tf - t0))
|
||||
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
||||
print('Accuracy :', accuracy)
|
||||
print('F1 :', f1.data)
|
||||
print('Accuracy max:', accuracy)
|
||||
print('F1 :', f1)
|
||||
|
||||
#### Log ####
|
||||
data={
|
||||
|
@ -219,7 +219,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
|
|||
"""
|
||||
device = next(model.parameters()).device
|
||||
log = []
|
||||
dl_val_it = iter(dl_val)
|
||||
#dl_val_it = iter(dl_val)
|
||||
val_loss=None
|
||||
|
||||
high_grad_track = True
|
||||
|
@ -251,8 +251,11 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
|
|||
meta_opt.zero_grad()
|
||||
|
||||
for epoch in range(1, epochs+1):
|
||||
t0 = time.process_time()
|
||||
t0 = time.perf_counter()
|
||||
|
||||
dl_train, dl_val = next_CVSplit()
|
||||
dl_val_it = iter(dl_val)
|
||||
|
||||
for i, (xs, ys) in enumerate(dl_train):
|
||||
xs, ys = xs.to(device), ys.to(device)
|
||||
|
||||
|
@ -303,7 +306,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
|
|||
#diffopt.detach_()
|
||||
model['model'].detach_()
|
||||
|
||||
tf = time.process_time()
|
||||
tf = time.perf_counter()
|
||||
|
||||
if (save_sample_freq and epoch%save_sample_freq==0): #Data sample saving
|
||||
try:
|
||||
|
@ -345,7 +348,8 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
|
|||
print('Epoch : %d/%d'%(epoch,epochs))
|
||||
print('Time : %.00f'%(tf - t0))
|
||||
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
||||
print('Accuracy :', max([x["acc"] for x in log]))
|
||||
print('Accuracy max:', max([x["acc"] for x in log]))
|
||||
print('F1 :', f1)
|
||||
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
|
||||
if not model['data_aug']._fixed_prob: print('TF Proba :', model['data_aug']['prob'].data)
|
||||
#print('proba grad',model['data_aug']['prob'].grad)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue