mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Commentaires + rangement
This commit is contained in:
parent
da711d17cd
commit
2e09f07f52
4 changed files with 336 additions and 279 deletions
|
@ -1,3 +1,7 @@
|
|||
""" Utilities function for training.
|
||||
|
||||
"""
|
||||
|
||||
import torch
|
||||
#import torch.optim
|
||||
import torchvision
|
||||
|
@ -7,6 +11,14 @@ from datasets import *
|
|||
from utils import *
|
||||
|
||||
def test(model):
|
||||
"""Evaluate a model on test data.
|
||||
|
||||
Args:
|
||||
model (nn.Module): Model to test.
|
||||
|
||||
Returns:
|
||||
(float, Tensor) Returns the accuracy and test loss of the model.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
model.eval()
|
||||
|
||||
|
@ -35,6 +47,16 @@ def test(model):
|
|||
return accuracy, np.mean(loss)
|
||||
|
||||
def compute_vaLoss(model, dl_it, dl):
|
||||
"""Evaluate a model on a batch of data.
|
||||
|
||||
Args:
|
||||
model (nn.Module): Model to evaluate.
|
||||
dl_it (Iterator): Data loader iterator.
|
||||
dl (DataLoader): Data loader.
|
||||
|
||||
Returns:
|
||||
(Tensor) Loss on a single batch of data.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
try:
|
||||
xs, ys = next(dl_it)
|
||||
|
@ -47,6 +69,17 @@ def compute_vaLoss(model, dl_it, dl):
|
|||
return F.cross_entropy(F.log_softmax(model(xs), dim=1), ys)
|
||||
|
||||
def train_classic(model, opt_param, epochs=1, print_freq=1):
|
||||
"""Classic training of a model.
|
||||
|
||||
Args:
|
||||
model (nn.Module): Model to train.
|
||||
opt_param (dict): Dictionnary containing optimizers parameters.
|
||||
epochs (int): Number of epochs to perform. (default: 1)
|
||||
print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1)
|
||||
|
||||
Returns:
|
||||
(list) Logs of training. Each items is a dict containing results of an epoch.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
optim = torch.optim.SGD(model.parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
|
||||
|
@ -97,152 +130,30 @@ def train_classic(model, opt_param, epochs=1, print_freq=1):
|
|||
|
||||
return log
|
||||
|
||||
def train_classic_higher(model, epochs=1):
|
||||
device = next(model.parameters()).device
|
||||
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
|
||||
def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start=0, print_freq=1, KLdiv=1, hp_opt=False, save_sample_freq=None):
|
||||
"""Training of an augmented model with higher.
|
||||
|
||||
model.train()
|
||||
dl_val_it = iter(dl_val)
|
||||
log = []
|
||||
This function is intended to be used with Augmented_model containing an Higher_model (see dataug.py).
|
||||
Ex : Augmented_model(Data_augV5(...), Higher_model(model))
|
||||
|
||||
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
diffopt = higher.optim.get_diff_optim(optim, model.parameters(),fmodel=fmodel,track_higher_grads=False)
|
||||
#with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=False) as (fmodel, diffopt):
|
||||
Training loss can either be computed directly from augmented inputs (KLdiv=0).
|
||||
However, it is recommended to use the KLdiv loss computation, inspired from UDA, which combine original and augmented inputs to compute the loss (KLdiv>0).
|
||||
See : https://github.com/google-research/uda
|
||||
|
||||
for epoch in range(epochs):
|
||||
#print_torch_mem("Start epoch "+str(epoch))
|
||||
#print("Fast param ",len(fmodel._fast_params))
|
||||
t0 = time.process_time()
|
||||
for i, (features, labels) in enumerate(dl_train):
|
||||
#print_torch_mem("Start iter")
|
||||
features,labels = features.to(device), labels.to(device)
|
||||
Args:
|
||||
model (nn.Module): Augmented model to train.
|
||||
opt_param (dict): Dictionnary containing optimizers parameters.
|
||||
epochs (int): Number of epochs to perform. (default: 1)
|
||||
inner_it (int): Number of inner iteration before a meta-step. 0 inner iteration means there's no meta-step. (default: 1)
|
||||
dataug_epoch_start (int): Epoch when to start data augmentation. (default: 0)
|
||||
print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1)
|
||||
KLdiv (float): Proportion of the KLdiv loss added to the supervised loss. If set to 0, the loss is classicly computed on augmented inputs. (default: 1)
|
||||
hp_opt (bool): Wether to learn inner optimizer parameters. (default: False)
|
||||
save_sample_freq (int): Number of epochs between saves of samples of data. If set to None, only one save would be done at the end of the training. (default: None)
|
||||
|
||||
#optim.zero_grad()
|
||||
logits = model.forward(features)
|
||||
pred = F.log_softmax(logits, dim=1)
|
||||
loss = F.cross_entropy(pred,labels)
|
||||
#.backward()
|
||||
#optim.step()
|
||||
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
|
||||
|
||||
model_copy(src=fmodel, dst=model, patch_copy=False)
|
||||
optim_copy(dopt=diffopt, opt=optim)
|
||||
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
diffopt = higher.optim.get_diff_optim(optim, model.parameters(),fmodel=fmodel,track_higher_grads=False)
|
||||
|
||||
#### Tests ####
|
||||
tf = time.process_time()
|
||||
try:
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_val_it = iter(dl_val)
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
|
||||
|
||||
val_loss = F.cross_entropy(model(xs_val), ys_val)
|
||||
accuracy, _ =test(model)
|
||||
model.train()
|
||||
#### Log ####
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"param": None,
|
||||
}
|
||||
log.append(data)
|
||||
|
||||
return log
|
||||
|
||||
def train_UDA(model, dl_unsup, opt_param, epochs=1, print_freq=1):
|
||||
|
||||
device = next(model.parameters()).device
|
||||
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
opt = torch.optim.SGD(model.parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
|
||||
|
||||
|
||||
model.train()
|
||||
dl_val_it = iter(dl_val)
|
||||
dl_unsup_it =iter(dl_unsup)
|
||||
log = []
|
||||
for epoch in range(epochs):
|
||||
#print_torch_mem("Start epoch")
|
||||
t0 = time.process_time()
|
||||
for i, (features, labels) in enumerate(dl_train):
|
||||
#print_torch_mem("Start iter")
|
||||
features,labels = features.to(device), labels.to(device)
|
||||
|
||||
optim.zero_grad()
|
||||
#Supervised
|
||||
logits = model.forward(features)
|
||||
pred = F.log_softmax(logits, dim=1)
|
||||
sup_loss = F.cross_entropy(pred,labels)
|
||||
|
||||
#Unsupervised
|
||||
try:
|
||||
aug_xs, origin_xs, ys = next(dl_unsup_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_unsup_it =iter(dl_unsup)
|
||||
aug_xs, origin_xs, ys = next(dl_unsup_it)
|
||||
aug_xs, origin_xs, ys = aug_xs.to(device), origin_xs.to(device), ys.to(device)
|
||||
|
||||
#print(aug_xs.shape, origin_xs.shape, ys.shape)
|
||||
sup_logits = model.forward(origin_xs)
|
||||
unsup_logits = model.forward(aug_xs)
|
||||
|
||||
log_sup=F.log_softmax(sup_logits, dim=1)
|
||||
log_unsup=F.log_softmax(unsup_logits, dim=1)
|
||||
#KL div w/ logits
|
||||
unsup_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_unsup)
|
||||
unsup_loss=unsup_loss.sum(dim=-1).mean()
|
||||
|
||||
#print(unsup_loss)
|
||||
unsupp_coeff = 1
|
||||
loss = sup_loss + unsup_loss * unsupp_coeff
|
||||
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
#### Tests ####
|
||||
tf = time.process_time()
|
||||
try:
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_val_it = iter(dl_val)
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
|
||||
|
||||
val_loss = F.cross_entropy(model(xs_val), ys_val)
|
||||
accuracy, _ =test(model)
|
||||
model.train()
|
||||
|
||||
#### Print ####
|
||||
if(print_freq and epoch%print_freq==0):
|
||||
print('-'*9)
|
||||
print('Epoch : %d/%d'%(epoch,epochs))
|
||||
print('Time : %.00f'%(tf - t0))
|
||||
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
||||
print('Sup Loss :', sup_loss.item(), '/ unsup_loss :', unsup_loss.item())
|
||||
print('Accuracy :', accuracy)
|
||||
|
||||
#### Log ####
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"param": None,
|
||||
}
|
||||
log.append(data)
|
||||
|
||||
return log
|
||||
|
||||
def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, hp_opt=False, save_sample=False):
|
||||
Returns:
|
||||
(list) Logs of training. Each items is a dict containing results of an epoch.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
log = []
|
||||
dl_val_it = iter(dl_val)
|
||||
|
@ -282,7 +193,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
|||
for i, (xs, ys) in enumerate(dl_train):
|
||||
xs, ys = xs.to(device), ys.to(device)
|
||||
|
||||
if(not KLdiv):
|
||||
if(KLdiv<=0):
|
||||
#Methode uniforme
|
||||
logits = model(xs) # modified `params` can also be passed as a kwarg
|
||||
loss = F.cross_entropy(F.log_softmax(logits, dim=1), ys, reduction='none') # no need to call loss.backwards()
|
||||
|
@ -317,8 +228,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
|||
aug_loss = (w_loss * aug_loss).mean()
|
||||
aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean()
|
||||
|
||||
unsupp_coeff = 1
|
||||
loss += aug_loss * unsupp_coeff
|
||||
loss += aug_loss * KLdiv
|
||||
|
||||
#print_graph(loss) #to visualize computational graph
|
||||
|
||||
|
@ -351,7 +261,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
|||
|
||||
tf = time.process_time()
|
||||
|
||||
if save_sample: #Data sample saving
|
||||
if (save_sample_freq and epoch%save_sample_freq==0): #Data sample saving
|
||||
try:
|
||||
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
|
||||
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
|
||||
|
@ -423,4 +333,4 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
|||
print("Couldn't save finals samples")
|
||||
pass
|
||||
|
||||
return log
|
||||
return log
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue