mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Tests influence nb TF
This commit is contained in:
parent
0066da2e4d
commit
0d1a684aed
5 changed files with 46 additions and 5 deletions
|
@ -316,6 +316,8 @@ class Data_augV3(nn.Module): #Echantillonage uniforme/Mixte
|
|||
class Data_augV4(nn.Module): #Transformations avec mask
|
||||
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0):
|
||||
super(Data_augV4, self).__init__()
|
||||
assert len(TF_dict)>0
|
||||
|
||||
self._data_augmentation = True
|
||||
|
||||
#self._TF_matrix={}
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 48 KiB |
Binary file not shown.
Before Width: | Height: | Size: 118 KiB |
|
@ -696,7 +696,7 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
|
|||
model.augment(mode=True)
|
||||
if inner_it != 0: high_grad_track = True
|
||||
|
||||
print("Copy ", countcopy)
|
||||
#print("Copy ", countcopy)
|
||||
return log
|
||||
|
||||
##########################################
|
||||
|
@ -728,7 +728,7 @@ if __name__ == "__main__":
|
|||
print('-'*9)
|
||||
'''
|
||||
#### Augmented Model ####
|
||||
#'''
|
||||
'''
|
||||
aug_model = Augmented_model(Data_augV4(TF_dict=TF.TF_dict, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||
print(str(aug_model), 'on', device_name)
|
||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||
|
@ -744,7 +744,43 @@ if __name__ == "__main__":
|
|||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
print('-'*9)
|
||||
#'''
|
||||
'''
|
||||
## TF number tests ##
|
||||
res_folder="res/TF_nb_tests/"
|
||||
epochs= 200
|
||||
inner_its = [0, 10]
|
||||
dataug_epoch_starts= [0, -1]
|
||||
max_TF_nb = len(TF.TF_dict)
|
||||
|
||||
try:
|
||||
os.mkdir(res_folder)
|
||||
os.mkdir(res_folder+"log/")
|
||||
except FileExistsError:
|
||||
pass
|
||||
|
||||
for n_inner_iter in inner_its:
|
||||
print("---Starting inner_it", n_inner_iter,"---")
|
||||
for dataug_epoch_start in dataug_epoch_starts:
|
||||
print("---Starting dataug", dataug_epoch_start,"---")
|
||||
for i in range(1,max_TF_nb):
|
||||
keys = list(TF.TF_dict.keys())[0:i]
|
||||
ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
||||
|
||||
aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||
print(str(aug_model), 'on', device_name)
|
||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=1, loss_patience=10)
|
||||
|
||||
####
|
||||
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in (ms):", out["Time"][0], "+/-", out["Time"][1])
|
||||
with open(res_folder+"log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
print('-'*9)
|
||||
|
||||
#### Comparison ####
|
||||
'''
|
||||
|
@ -757,8 +793,8 @@ if __name__ == "__main__":
|
|||
#"res/log/Aug_mod(Data_augV4(Mix 0,5-3 TF)-LeNet)-100 epochs (dataug:0)- 1 in_it.json",
|
||||
#"res/log/Aug_mod(Data_augV4(Mix 0.5-3 TF)-LeNet)-100 epochs (dataug:50)- 10 in_it.json",
|
||||
#"res/log/Aug_mod(Data_augV4(Uniform-3 TF)-LeNet)-100 epochs (dataug:0)- 10 in_it.json",
|
||||
"res/log/Aug_mod(Data_augV4(Uniform-10 TF)-LeNet)-100 epochs (dataug:50)- 10 in_it.json",
|
||||
"res/log/Aug_mod(Data_augV4(Uniform-10 TF)-LeNet)-100 epochs (dataug:50)- 0 in_it.json",
|
||||
#"res/log/Aug_mod(Data_augV4(Uniform-10 TF)-LeNet)-100 epochs (dataug:50)- 10 in_it.json",
|
||||
#"res/log/Aug_mod(Data_augV4(Uniform-10 TF)-LeNet)-100 epochs (dataug:50)- 0 in_it.json",
|
||||
]
|
||||
plot_compare(filenames=files, fig_name="res/compare")
|
||||
'''
|
|
@ -43,6 +43,7 @@ def plot_res(log, fig_name='res'):
|
|||
|
||||
fig_name = fig_name.replace('.',',')
|
||||
plt.savefig(fig_name)
|
||||
plt.close()
|
||||
|
||||
def plot_compare(filenames, fig_name='res'):
|
||||
|
||||
|
@ -82,6 +83,7 @@ def plot_compare(filenames, fig_name='res'):
|
|||
fig_name = fig_name.replace('.',',')
|
||||
|
||||
plt.savefig(fig_name, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
def viz_sample_data(imgs, labels, fig_name='data_sample'):
|
||||
|
||||
|
@ -97,6 +99,7 @@ def viz_sample_data(imgs, labels, fig_name='data_sample'):
|
|||
plt.xlabel(labels[i].item())
|
||||
|
||||
plt.savefig(fig_name)
|
||||
plt.close()
|
||||
|
||||
def model_copy(src,dst, patch_copy=True, copy_grad=True):
|
||||
#model=copy.deepcopy(fmodel) #Pas approprie, on ne souhaite que les poids/grad (pas tout fmodel et ses etats)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue