2019-11-08 11:28:06 -05:00
|
|
|
from model import *
|
|
|
|
from dataug import *
|
2019-11-13 11:44:29 -05:00
|
|
|
#from utils import *
|
|
|
|
from train_utils import *
|
2019-11-08 11:28:06 -05:00
|
|
|
|
2019-11-11 14:33:40 -05:00
|
|
|
tf_names = [
|
|
|
|
## Geometric TF ##
|
2019-12-02 06:37:19 -05:00
|
|
|
'Identity',
|
|
|
|
'FlipUD',
|
|
|
|
'FlipLR',
|
|
|
|
'Rotate',
|
|
|
|
'TranslateX',
|
2019-12-04 10:05:59 -05:00
|
|
|
'TranslateY',
|
|
|
|
'ShearX',
|
|
|
|
'ShearY',
|
2019-11-11 14:33:40 -05:00
|
|
|
|
2019-11-27 12:54:19 -05:00
|
|
|
## Color TF (Expect image in the range of [0, 1]) ##
|
2019-12-04 10:05:59 -05:00
|
|
|
'Contrast',
|
|
|
|
'Color',
|
|
|
|
'Brightness',
|
|
|
|
'Sharpness',
|
|
|
|
'Posterize',
|
|
|
|
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
2019-11-27 12:54:19 -05:00
|
|
|
|
|
|
|
#Color TF (Common mag scale)
|
|
|
|
#'+Contrast',
|
|
|
|
#'+Color',
|
|
|
|
#'+Brightness',
|
|
|
|
#'+Sharpness',
|
|
|
|
#'-Contrast',
|
|
|
|
#'-Color',
|
|
|
|
#'-Brightness',
|
|
|
|
#'-Sharpness',
|
|
|
|
#'=Posterize',
|
|
|
|
#'=Solarize',
|
|
|
|
|
2019-11-22 11:22:57 -05:00
|
|
|
#'BRotate',
|
|
|
|
#'BTranslateX',
|
|
|
|
#'BTranslateY',
|
|
|
|
#'BShearX',
|
|
|
|
#'BShearY',
|
2019-11-25 16:36:35 +00:00
|
|
|
#'BadTranslateX',
|
|
|
|
#'BadTranslateX_neg',
|
|
|
|
#'BadTranslateY',
|
|
|
|
#'BadTranslateY_neg',
|
2019-11-22 11:22:57 -05:00
|
|
|
|
2019-12-02 08:22:24 -05:00
|
|
|
#'BadColor',
|
|
|
|
#'BadSharpness',
|
|
|
|
#'BadContrast',
|
|
|
|
#'BadBrightness',
|
2019-11-27 17:19:51 -05:00
|
|
|
|
2019-11-11 14:33:40 -05:00
|
|
|
#Non fonctionnel
|
|
|
|
#'Auto_Contrast', #Pas opti pour des batch (Super lent)
|
|
|
|
#'Equalize',
|
|
|
|
]
|
|
|
|
|
2019-11-08 11:28:06 -05:00
|
|
|
device = torch.device('cuda')
|
|
|
|
|
|
|
|
if device == torch.device('cpu'):
|
|
|
|
device_name = 'CPU'
|
|
|
|
else:
|
|
|
|
device_name = torch.cuda.get_device_name(device)
|
|
|
|
|
|
|
|
##########################################
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
2019-12-04 12:28:32 -05:00
|
|
|
tasks={
|
|
|
|
#'classic',
|
2019-12-04 14:48:11 -05:00
|
|
|
#'aug_dataset',
|
|
|
|
'aug_model'
|
2019-12-04 12:28:32 -05:00
|
|
|
}
|
2019-12-04 12:58:11 -05:00
|
|
|
n_inner_iter = 1
|
2019-12-04 14:48:11 -05:00
|
|
|
epochs = 200
|
2019-11-08 11:28:06 -05:00
|
|
|
dataug_epoch_start=0
|
|
|
|
|
2019-12-04 12:28:32 -05:00
|
|
|
|
2019-11-08 11:28:06 -05:00
|
|
|
#### Classic ####
|
2019-12-04 12:28:32 -05:00
|
|
|
if 'classic' in tasks:
|
|
|
|
t0 = time.process_time()
|
|
|
|
model = LeNet(3,10).to(device)
|
|
|
|
#model = WideResNet(num_classes=10, wrn_size=16).to(device)
|
|
|
|
#model = Augmented_model(Data_augV3(mix_dist=0.0), LeNet(3,10)).to(device)
|
|
|
|
#model.augment(mode=False)
|
|
|
|
|
|
|
|
print(str(model), 'on', device_name)
|
2019-12-04 14:48:11 -05:00
|
|
|
log= train_classic(model=model, epochs=epochs, print_freq=10)
|
2019-12-04 12:28:32 -05:00
|
|
|
#log= train_classic_higher(model=model, epochs=epochs)
|
|
|
|
|
2019-12-04 14:48:11 -05:00
|
|
|
exec_time=time.process_time() - t0
|
2019-12-04 12:28:32 -05:00
|
|
|
####
|
|
|
|
print('-'*9)
|
|
|
|
times = [x["time"] for x in log]
|
2019-12-04 14:48:11 -05:00
|
|
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Log": log}
|
2019-12-04 12:28:32 -05:00
|
|
|
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
|
|
|
filename = "{}-{} epochs".format(str(model),epochs)
|
|
|
|
with open("res/log/%s.json" % filename, "w+") as f:
|
|
|
|
json.dump(out, f, indent=True)
|
|
|
|
print('Log :\"',f.name, '\" saved !')
|
|
|
|
|
|
|
|
plot_res(log, fig_name="res/"+filename)
|
|
|
|
|
2019-12-04 14:48:11 -05:00
|
|
|
print('Execution Time : %.00f '%(exec_time))
|
2019-12-04 12:28:32 -05:00
|
|
|
print('-'*9)
|
|
|
|
|
|
|
|
|
|
|
|
#### Augmented Dataset ####
|
|
|
|
if 'aug_dataset' in tasks:
|
2019-12-04 12:58:11 -05:00
|
|
|
|
2019-12-04 12:28:32 -05:00
|
|
|
t0 = time.process_time()
|
2019-12-04 14:48:11 -05:00
|
|
|
|
|
|
|
data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
|
2019-12-04 16:34:02 -05:00
|
|
|
data_train_aug.augement_data(aug_copy=30)
|
2019-12-04 14:48:11 -05:00
|
|
|
print(data_train_aug)
|
|
|
|
dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True)
|
|
|
|
|
2019-12-04 16:34:02 -05:00
|
|
|
xs, ys = next(iter(dl_train))
|
|
|
|
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
|
2019-12-04 14:48:11 -05:00
|
|
|
|
2019-12-04 12:28:32 -05:00
|
|
|
model = LeNet(3,10).to(device)
|
|
|
|
#model = WideResNet(num_classes=10, wrn_size=16).to(device)
|
|
|
|
#model = Augmented_model(Data_augV3(mix_dist=0.0), LeNet(3,10)).to(device)
|
|
|
|
#model.augment(mode=False)
|
|
|
|
|
|
|
|
print(str(model), 'on', device_name)
|
2019-12-04 14:48:11 -05:00
|
|
|
log= train_classic(model=model, epochs=epochs, print_freq=10)
|
2019-12-04 12:28:32 -05:00
|
|
|
#log= train_classic_higher(model=model, epochs=epochs)
|
|
|
|
|
2019-12-04 14:48:11 -05:00
|
|
|
exec_time=time.process_time() - t0
|
2019-12-04 12:28:32 -05:00
|
|
|
####
|
|
|
|
print('-'*9)
|
|
|
|
times = [x["time"] for x in log]
|
2019-12-04 14:48:11 -05:00
|
|
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Log": log}
|
2019-12-04 12:28:32 -05:00
|
|
|
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
|
|
|
filename = "{}-{}-{} epochs".format(str(data_train_aug),str(model),epochs)
|
|
|
|
with open("res/log/%s.json" % filename, "w+") as f:
|
|
|
|
json.dump(out, f, indent=True)
|
|
|
|
print('Log :\"',f.name, '\" saved !')
|
|
|
|
|
|
|
|
plot_res(log, fig_name="res/"+filename)
|
|
|
|
|
2019-12-04 14:48:11 -05:00
|
|
|
print('Execution Time : %.00f '%(exec_time))
|
2019-12-04 12:28:32 -05:00
|
|
|
print('-'*9)
|
2019-11-08 16:50:02 -05:00
|
|
|
|
2019-12-04 12:28:32 -05:00
|
|
|
|
|
|
|
#### Augmented Model ####
|
|
|
|
if 'aug_model' in tasks:
|
|
|
|
t0 = time.process_time()
|
|
|
|
|
|
|
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
|
|
|
|
|
|
|
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
|
2019-12-04 16:34:02 -05:00
|
|
|
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), LeNet(3,10)).to(device)
|
|
|
|
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), WideResNet(num_classes=10, wrn_size=32)).to(device)
|
|
|
|
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), WideResNet(num_classes=10, wrn_size=32)).to(device)
|
2019-12-04 12:28:32 -05:00
|
|
|
print(str(aug_model), 'on', device_name)
|
|
|
|
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
|
|
|
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=None)
|
|
|
|
|
2019-12-04 14:48:11 -05:00
|
|
|
exec_time=time.process_time() - t0
|
2019-12-04 12:28:32 -05:00
|
|
|
####
|
|
|
|
print('-'*9)
|
|
|
|
times = [x["time"] for x in log]
|
2019-12-04 14:48:11 -05:00
|
|
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
2019-12-04 12:28:32 -05:00
|
|
|
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
|
|
|
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
|
|
|
with open("res/log/%s.json" % filename, "w+") as f:
|
|
|
|
json.dump(out, f, indent=True)
|
|
|
|
print('Log :\"',f.name, '\" saved !')
|
|
|
|
|
|
|
|
plot_resV2(log, fig_name="res/"+filename, param_names=tf_names)
|
|
|
|
|
2019-12-04 14:48:11 -05:00
|
|
|
print('Execution Time : %.00f '%(exec_time))
|
2019-12-04 12:28:32 -05:00
|
|
|
print('-'*9)
|