2019-11-13 11:45:05 -05:00
|
|
|
import torch
|
|
|
|
from torch.utils.data import SubsetRandomSampler
|
|
|
|
import torchvision
|
|
|
|
|
|
|
|
BATCH_SIZE = 300
|
2019-11-13 13:38:00 -05:00
|
|
|
#TEST_SIZE = 300
|
|
|
|
TEST_SIZE = 10000
|
2019-11-13 11:45:05 -05:00
|
|
|
|
|
|
|
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
|
|
|
|
#transform_train = torchvision.transforms.Compose([
|
|
|
|
# torchvision.transforms.RandomHorizontalFlip(),
|
|
|
|
# torchvision.transforms.ToTensor(),
|
|
|
|
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
|
|
|
#])
|
|
|
|
transform = torchvision.transforms.Compose([
|
|
|
|
torchvision.transforms.ToTensor(),
|
|
|
|
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
|
|
|
])
|
|
|
|
'''
|
|
|
|
data_train = torchvision.datasets.MNIST(
|
|
|
|
"./data", train=True, download=True,
|
|
|
|
transform=torchvision.transforms.Compose([
|
|
|
|
#torchvision.transforms.RandomAffine(degrees=180, translate=None, scale=None, shear=None, resample=False, fillcolor=0),
|
|
|
|
torchvision.transforms.ToTensor()
|
|
|
|
])
|
|
|
|
)
|
|
|
|
data_test = torchvision.datasets.MNIST(
|
|
|
|
"./data", train=False, download=True, transform=torchvision.transforms.ToTensor()
|
|
|
|
)
|
|
|
|
'''
|
2019-12-02 06:37:19 -05:00
|
|
|
|
|
|
|
from torchvision.datasets.vision import VisionDataset
|
|
|
|
from PIL import Image
|
|
|
|
import augmentation_transforms
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
class AugmentedDataset(VisionDataset):
|
|
|
|
def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
|
|
|
|
|
|
|
|
super(AugmentedDataset, self).__init__(root, transform=transform, target_transform=target_transform)
|
|
|
|
|
|
|
|
supervised_dataset = torchvision.datasets.CIFAR10(root, train=train, download=download, transform=transform)
|
|
|
|
|
|
|
|
self.sup_data = supervised_dataset.data
|
|
|
|
self.sup_targets = supervised_dataset.targets
|
|
|
|
|
|
|
|
for idx, img in enumerate(self.sup_data):
|
|
|
|
self.sup_data[idx]= Image.fromarray(img) #to PIL Image
|
|
|
|
|
|
|
|
self.unsup_data=[]
|
|
|
|
self.unsup_targets=[]
|
|
|
|
|
|
|
|
self.data= self.sup_data
|
|
|
|
self.targets= self.sup_targets
|
|
|
|
|
|
|
|
|
|
|
|
self._TF = [
|
|
|
|
'Invert', 'Cutout', 'Sharpness', 'AutoContrast', 'Posterize',
|
|
|
|
'ShearX', 'TranslateX', 'TranslateY', 'ShearY', 'Rotate',
|
|
|
|
'Equalize', 'Contrast', 'Color', 'Solarize', 'Brightness']
|
|
|
|
self._op_list =[]
|
|
|
|
self.prob=0.5
|
|
|
|
for tf in self._TF:
|
|
|
|
for mag in range(1, 10):
|
|
|
|
self._op_list+=[(tf, self.prob, mag)]
|
|
|
|
self._nb_op = len(self._op_list)
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
index (int): Index
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
tuple: (image, target) where target is index of the target class.
|
|
|
|
"""
|
|
|
|
img, target = self.data[index], self.targets[index]
|
|
|
|
|
|
|
|
# doing this so that it is consistent with all other datasets
|
|
|
|
# to return a PIL Image
|
|
|
|
#img = Image.fromarray(img)
|
|
|
|
|
|
|
|
if self.transform is not None:
|
|
|
|
img = self.transform(img)
|
|
|
|
|
|
|
|
if self.target_transform is not None:
|
|
|
|
target = self.target_transform(target)
|
|
|
|
|
|
|
|
return img, target
|
|
|
|
|
|
|
|
def augement_data(self, aug_copy=1):
|
|
|
|
|
|
|
|
policies = []
|
|
|
|
for op_1 in self._op_list:
|
|
|
|
for op_2 in self._op_list:
|
|
|
|
policies += [[op_1, op_2]]
|
|
|
|
|
|
|
|
for idx, image in enumerate(self.sup_data):
|
|
|
|
for _ in range(aug_copy):
|
|
|
|
chosen_policy = policies[np.random.choice(len(policies))]
|
|
|
|
aug_image = augmentation_transforms.apply_policy(chosen_policy, image)
|
|
|
|
#aug_image = augmentation_transforms.cutout_numpy(aug_image)
|
|
|
|
|
|
|
|
self.unsup_data+=[aug_image]
|
|
|
|
self.unsup_targets+=[self.sup_targets[idx]]
|
|
|
|
|
|
|
|
print(type(self.data), type(self.sup_data), type(self.unsup_data))
|
|
|
|
print(len(self.data), len(self.sup_data), len(self.unsup_data))
|
|
|
|
#self.data= self.sup_data+self.unsup_data
|
|
|
|
self.data= np.concatenate((self.sup_data, self.unsup_data), axis=0)
|
|
|
|
print(len(self.data))
|
|
|
|
self.targets= self.sup_targets+self.unsup_targets
|
|
|
|
|
|
|
|
|
|
|
|
def len_supervised(self):
|
|
|
|
return len(self.sup_data)
|
|
|
|
|
|
|
|
def len_unsupervised(self):
|
|
|
|
return len(self.unsup_data)
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.data)
|
|
|
|
|
|
|
|
|
|
|
|
data_train = torchvision.datasets.CIFAR10("./data", train=True, download=True, transform=transform)
|
|
|
|
#print(len(data_train))
|
|
|
|
#data_train = AugmentedDataset("./data", train=True, download=True, transform=transform)
|
|
|
|
#print(len(data_train), data_train.len_supervised(), data_train.len_unsupervised())
|
|
|
|
#data_train.augement_data()
|
|
|
|
#print(len(data_train), data_train.len_supervised(), data_train.len_unsupervised())
|
2019-11-13 11:45:05 -05:00
|
|
|
#data_val = torchvision.datasets.CIFAR10(
|
|
|
|
# "./data", train=True, download=True, transform=transform
|
|
|
|
#)
|
|
|
|
data_test = torchvision.datasets.CIFAR10(
|
|
|
|
"./data", train=False, download=True, transform=transform
|
|
|
|
)
|
|
|
|
#'''
|
2019-11-20 16:06:27 -05:00
|
|
|
train_subset_indices=range(int(len(data_train)/2))
|
2019-11-13 11:45:05 -05:00
|
|
|
val_subset_indices=range(int(len(data_train)/2),len(data_train))
|
2019-11-21 12:29:17 -05:00
|
|
|
#train_subset_indices=range(BATCH_SIZE*10)
|
|
|
|
#val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20)
|
2019-11-13 11:45:05 -05:00
|
|
|
|
|
|
|
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices))
|
|
|
|
dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices))
|
2019-12-02 06:37:19 -05:00
|
|
|
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False)
|