mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 20:20:46 +02:00
98 lines
3.2 KiB
Python
98 lines
3.2 KiB
Python
|
import torch.nn as nn
|
||
|
import torch.nn.init as init
|
||
|
import torch.nn.functional as F
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
_bn_momentum = 0.1
|
||
|
|
||
|
|
||
|
def conv3x3(in_planes, out_planes, stride=1):
|
||
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=True)
|
||
|
|
||
|
|
||
|
def conv_init(m):
|
||
|
classname = m.__class__.__name__
|
||
|
if classname.find('Conv') != -1:
|
||
|
init.xavier_uniform_(m.weight, gain=np.sqrt(2))
|
||
|
init.constant_(m.bias, 0)
|
||
|
elif classname.find('BatchNorm') != -1:
|
||
|
init.constant_(m.weight, 1)
|
||
|
init.constant_(m.bias, 0)
|
||
|
|
||
|
|
||
|
class WideBasic(nn.Module):
|
||
|
def __init__(self, in_planes, planes, dropout_rate, stride=1):
|
||
|
super(WideBasic, self).__init__()
|
||
|
assert dropout_rate==0.0, 'dropout layer not used'
|
||
|
self.bn1 = nn.BatchNorm2d(in_planes, momentum=_bn_momentum)
|
||
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, bias=True)
|
||
|
#self.dropout = nn.Dropout(p=dropout_rate)
|
||
|
self.bn2 = nn.BatchNorm2d(planes, momentum=_bn_momentum)
|
||
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True)
|
||
|
|
||
|
self.shortcut = nn.Sequential()
|
||
|
if stride != 1 or in_planes != planes:
|
||
|
self.shortcut = nn.Sequential(
|
||
|
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=True),
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
# out = self.dropout(self.conv1(F.relu(self.bn1(x))))
|
||
|
out = self.conv1(F.relu(self.bn1(x)))
|
||
|
out = self.conv2(F.relu(self.bn2(out)))
|
||
|
out += self.shortcut(x)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class WideResNet(nn.Module):
|
||
|
def __init__(self, depth, widen_factor, dropout_rate, num_classes):
|
||
|
super(WideResNet, self).__init__()
|
||
|
self.depth=depth
|
||
|
self.widen_factor=widen_factor
|
||
|
self.in_planes = 16
|
||
|
|
||
|
assert ((depth - 4) % 6 == 0), 'Wide-resnet depth should be 6n+4'
|
||
|
n = int((depth - 4) / 6)
|
||
|
k = widen_factor
|
||
|
|
||
|
nStages = [16, 16*k, 32*k, 64*k]
|
||
|
|
||
|
self.conv1 = conv3x3(3, nStages[0])
|
||
|
self.layer1 = self._wide_layer(WideBasic, nStages[1], n, dropout_rate, stride=1)
|
||
|
self.layer2 = self._wide_layer(WideBasic, nStages[2], n, dropout_rate, stride=2)
|
||
|
self.layer3 = self._wide_layer(WideBasic, nStages[3], n, dropout_rate, stride=2)
|
||
|
self.bn1 = nn.BatchNorm2d(nStages[3], momentum=_bn_momentum)
|
||
|
self.linear = nn.Linear(nStages[3], num_classes)
|
||
|
|
||
|
# self.apply(conv_init)
|
||
|
|
||
|
def _wide_layer(self, block, planes, num_blocks, dropout_rate, stride):
|
||
|
strides = [stride] + [1]*(num_blocks-1)
|
||
|
layers = []
|
||
|
|
||
|
for stride in strides:
|
||
|
layers.append(block(self.in_planes, planes, dropout_rate, stride))
|
||
|
self.in_planes = planes
|
||
|
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = self.conv1(x)
|
||
|
out = self.layer1(out)
|
||
|
out = self.layer2(out)
|
||
|
out = self.layer3(out)
|
||
|
out = F.relu(self.bn1(out))
|
||
|
# out = F.avg_pool2d(out, 8)
|
||
|
out = F.adaptive_avg_pool2d(out, (1, 1))
|
||
|
out = out.view(out.size(0), -1)
|
||
|
out = self.linear(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
def __str__(self):
|
||
|
""" Get name of model
|
||
|
|
||
|
"""
|
||
|
return "Wide_ResNet%d_%d"%(self.depth,self.widen_factor)
|