smart_augmentation/higher/smart_aug/nets/wideresnet.py

98 lines
3.2 KiB
Python
Raw Normal View History

2024-08-20 11:53:35 +02:00
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import numpy as np
_bn_momentum = 0.1
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=True)
def conv_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.xavier_uniform_(m.weight, gain=np.sqrt(2))
init.constant_(m.bias, 0)
elif classname.find('BatchNorm') != -1:
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
class WideBasic(nn.Module):
def __init__(self, in_planes, planes, dropout_rate, stride=1):
super(WideBasic, self).__init__()
assert dropout_rate==0.0, 'dropout layer not used'
self.bn1 = nn.BatchNorm2d(in_planes, momentum=_bn_momentum)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, bias=True)
#self.dropout = nn.Dropout(p=dropout_rate)
self.bn2 = nn.BatchNorm2d(planes, momentum=_bn_momentum)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=True),
)
def forward(self, x):
# out = self.dropout(self.conv1(F.relu(self.bn1(x))))
out = self.conv1(F.relu(self.bn1(x)))
out = self.conv2(F.relu(self.bn2(out)))
out += self.shortcut(x)
return out
class WideResNet(nn.Module):
def __init__(self, depth, widen_factor, dropout_rate, num_classes):
super(WideResNet, self).__init__()
self.depth=depth
self.widen_factor=widen_factor
self.in_planes = 16
assert ((depth - 4) % 6 == 0), 'Wide-resnet depth should be 6n+4'
n = int((depth - 4) / 6)
k = widen_factor
nStages = [16, 16*k, 32*k, 64*k]
self.conv1 = conv3x3(3, nStages[0])
self.layer1 = self._wide_layer(WideBasic, nStages[1], n, dropout_rate, stride=1)
self.layer2 = self._wide_layer(WideBasic, nStages[2], n, dropout_rate, stride=2)
self.layer3 = self._wide_layer(WideBasic, nStages[3], n, dropout_rate, stride=2)
self.bn1 = nn.BatchNorm2d(nStages[3], momentum=_bn_momentum)
self.linear = nn.Linear(nStages[3], num_classes)
# self.apply(conv_init)
def _wide_layer(self, block, planes, num_blocks, dropout_rate, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, dropout_rate, stride))
self.in_planes = planes
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.relu(self.bn1(out))
# out = F.avg_pool2d(out, 8)
out = F.adaptive_avg_pool2d(out, (1, 1))
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def __str__(self):
""" Get name of model
"""
return "Wide_ResNet%d_%d"%(self.depth,self.widen_factor)