2019-11-13 11:45:05 -05:00
|
|
|
import torch
|
|
|
|
from torch.utils.data import SubsetRandomSampler
|
|
|
|
import torchvision
|
|
|
|
|
|
|
|
BATCH_SIZE = 300
|
2019-11-13 13:38:00 -05:00
|
|
|
#TEST_SIZE = 300
|
|
|
|
TEST_SIZE = 10000
|
2019-11-13 11:45:05 -05:00
|
|
|
|
|
|
|
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
|
|
|
|
#transform_train = torchvision.transforms.Compose([
|
|
|
|
# torchvision.transforms.RandomHorizontalFlip(),
|
|
|
|
# torchvision.transforms.ToTensor(),
|
|
|
|
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
|
|
|
#])
|
|
|
|
transform = torchvision.transforms.Compose([
|
|
|
|
torchvision.transforms.ToTensor(),
|
|
|
|
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
|
|
|
])
|
|
|
|
'''
|
|
|
|
data_train = torchvision.datasets.MNIST(
|
|
|
|
"./data", train=True, download=True,
|
|
|
|
transform=torchvision.transforms.Compose([
|
|
|
|
#torchvision.transforms.RandomAffine(degrees=180, translate=None, scale=None, shear=None, resample=False, fillcolor=0),
|
|
|
|
torchvision.transforms.ToTensor()
|
|
|
|
])
|
|
|
|
)
|
|
|
|
data_test = torchvision.datasets.MNIST(
|
|
|
|
"./data", train=False, download=True, transform=torchvision.transforms.ToTensor()
|
|
|
|
)
|
|
|
|
'''
|
|
|
|
data_train = torchvision.datasets.CIFAR10(
|
|
|
|
"./data", train=True, download=True, transform=transform
|
|
|
|
)
|
|
|
|
#data_val = torchvision.datasets.CIFAR10(
|
|
|
|
# "./data", train=True, download=True, transform=transform
|
|
|
|
#)
|
|
|
|
data_test = torchvision.datasets.CIFAR10(
|
|
|
|
"./data", train=False, download=True, transform=transform
|
|
|
|
)
|
|
|
|
#'''
|
|
|
|
train_subset_indices=range(int(len(data_train)/2))
|
|
|
|
#train_subset_indices=range(BATCH_SIZE*10)
|
|
|
|
val_subset_indices=range(int(len(data_train)/2),len(data_train))
|
|
|
|
|
|
|
|
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices))
|
|
|
|
dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices))
|
|
|
|
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False)
|