smart_augmentation/higher/test_dataug.py

132 lines
5.3 KiB
Python
Raw Normal View History

2019-11-08 11:28:06 -05:00
from model import *
from dataug import *
2019-11-13 11:44:29 -05:00
#from utils import *
from train_utils import *
2019-11-08 11:28:06 -05:00
tf_names = [
## Geometric TF ##
2019-11-19 15:37:29 -05:00
'Identity',
'FlipUD',
'FlipLR',
2019-11-11 17:01:15 -05:00
'Rotate',
'TranslateX',
'TranslateY',
'ShearX',
'ShearY',
## Color TF (Expect image in the range of [0, 1]) ##
2019-11-11 17:01:15 -05:00
'Contrast',
'Color',
'Brightness',
2019-11-11 17:01:15 -05:00
'Sharpness',
'Posterize',
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
#Non fonctionnel
#'Auto_Contrast', #Pas opti pour des batch (Super lent)
#'Equalize',
]
2019-11-08 11:28:06 -05:00
device = torch.device('cuda')
if device == torch.device('cpu'):
device_name = 'CPU'
else:
device_name = torch.cuda.get_device_name(device)
##########################################
if __name__ == "__main__":
2019-11-19 15:37:29 -05:00
n_inner_iter = 10
epochs = 200
2019-11-08 11:28:06 -05:00
dataug_epoch_start=0
#### Classic ####
'''
2019-11-13 16:18:53 -05:00
#model = LeNet(3,10).to(device)
model = WideResNet(num_classes=10, wrn_size=16).to(device)
2019-11-08 11:28:06 -05:00
#model = Augmented_model(Data_augV3(mix_dist=0.0), LeNet(3,10)).to(device)
#model.augment(mode=False)
print(str(model), 'on', device_name)
log= train_classic(model=model, epochs=epochs)
#log= train_classic_higher(model=model, epochs=epochs)
2019-11-08 11:28:06 -05:00
####
plot_res(log, fig_name="res/{}-{} epochs".format(str(model),epochs))
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Log": log}
2019-11-19 15:37:29 -05:00
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
2019-11-08 11:28:06 -05:00
with open("res/log/%s.json" % "{}-{} epochs".format(str(model),epochs), "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
print('-'*9)
'''
#### Augmented Model ####
2019-11-14 21:17:54 -05:00
#'''
t0 = time.process_time()
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
#tf_dict = TF.TF_dict
2019-11-19 15:37:29 -05:00
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.5, fixed_mag=False, shared_mag=False), LeNet(3,10)).to(device)
2019-11-14 21:17:54 -05:00
#aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), WideResNet(num_classes=10, wrn_size=160)).to(device)
2019-11-08 11:28:06 -05:00
print(str(aug_model), 'on', device_name)
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
2019-11-13 16:18:53 -05:00
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=1, loss_patience=10)
2019-11-08 11:28:06 -05:00
####
2019-11-14 21:17:54 -05:00
plot_resV2(log, fig_name="res/{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), param_names=tf_names)
2019-11-08 11:28:06 -05:00
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
2019-11-19 15:37:29 -05:00
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
2019-11-08 11:28:06 -05:00
with open("res/log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
2019-11-19 15:37:29 -05:00
print('TF influence', TF_influence(log))
print('Execution Time : %.00f '%(time.process_time() - t0))
2019-11-08 11:28:06 -05:00
print('-'*9)
2019-11-14 21:17:54 -05:00
#'''
#### TF number tests ####
2019-11-14 21:42:00 -05:00
'''
2019-11-08 16:50:02 -05:00
res_folder="res/TF_nb_tests/"
epochs= 100
inner_its = [0, 1, 10]
2019-11-14 21:17:54 -05:00
dist_mix = [0.0, 0.5]
dataug_epoch_starts= [0]
TF_nb = [len(TF.TF_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
N_seq_TF= [2, 3, 4, 6]
2019-11-08 16:50:02 -05:00
try:
os.mkdir(res_folder)
os.mkdir(res_folder+"log/")
except FileExistsError:
pass
for n_inner_iter in inner_its:
print("---Starting inner_it", n_inner_iter,"---")
for dataug_epoch_start in dataug_epoch_starts:
print("---Starting dataug", dataug_epoch_start,"---")
for n_tf in N_seq_TF:
for i in TF_nb:
keys = list(TF.TF_dict.keys())[0:i]
ntf_dict = {k: TF.TF_dict[k] for k in keys}
aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, N_TF=n_tf, mix_dist=0.0), LeNet(3,10)).to(device)
print(str(aug_model), 'on', device_name)
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=None)
####
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), param_names=keys)
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in (s?):", out["Time"][0], "+/-", out["Time"][1])
with open(res_folder+"log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
print('-'*9)
2019-11-14 21:42:00 -05:00
'''