mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
347 lines
18 KiB
Python
347 lines
18 KiB
Python
|
import torch
|
|||
|
import kornia
|
|||
|
import random
|
|||
|
|
|||
|
### Available TF for Dataug ###
|
|||
|
'''
|
|||
|
TF_dict={ #Dataugv4
|
|||
|
## Geometric TF ##
|
|||
|
'Identity' : (lambda x, mag: x),
|
|||
|
'FlipUD' : (lambda x, mag: flipUD(x)),
|
|||
|
'FlipLR' : (lambda x, mag: flipLR(x)),
|
|||
|
'Rotate': (lambda x, mag: rotate(x, angle=torch.tensor([rand_int(mag, maxval=30)for _ in x], device=x.device))),
|
|||
|
'TranslateX': (lambda x, mag: translate(x, translation=torch.tensor([[rand_int(mag, maxval=20), 0] for _ in x], device=x.device))),
|
|||
|
'TranslateY': (lambda x, mag: translate(x, translation=torch.tensor([[0, rand_int(mag, maxval=20)] for _ in x], device=x.device))),
|
|||
|
'ShearX': (lambda x, mag: shear(x, shear=torch.tensor([[rand_float(mag, maxval=0.3), 0] for _ in x], device=x.device))),
|
|||
|
'ShearY': (lambda x, mag: shear(x, shear=torch.tensor([[0, rand_float(mag, maxval=0.3)] for _ in x], device=x.device))),
|
|||
|
|
|||
|
## Color TF (Expect image in the range of [0, 1]) ##
|
|||
|
'Contrast': (lambda x, mag: contrast(x, contrast_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))),
|
|||
|
'Color':(lambda x, mag: color(x, color_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))),
|
|||
|
'Brightness':(lambda x, mag: brightness(x, brightness_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))),
|
|||
|
'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))),
|
|||
|
'Posterize': (lambda x, mag: posterize(x, bits=torch.tensor([rand_int(mag, minval=4, maxval=8) for _ in x], device=x.device))),
|
|||
|
'Solarize': (lambda x, mag: solarize(x, thresholds=torch.tensor([rand_int(mag,minval=1, maxval=256)/256. for _ in x], device=x.device))) , #=>Image entre [0,1] #Pas opti pour des batch
|
|||
|
|
|||
|
#Non fonctionnel
|
|||
|
#'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent)
|
|||
|
#'Equalize': (lambda mag: None),
|
|||
|
}
|
|||
|
'''
|
|||
|
'''
|
|||
|
TF_dict={ #Dataugv5 #AutoAugment
|
|||
|
## Geometric TF ##
|
|||
|
'Identity' : (lambda x, mag: x),
|
|||
|
'FlipUD' : (lambda x, mag: flipUD(x)),
|
|||
|
'FlipLR' : (lambda x, mag: flipLR(x)),
|
|||
|
'Rotate': (lambda x, mag: rotate(x, angle=rand_floats(size=x.shape[0], mag=mag, maxval=30))),
|
|||
|
'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=0))),
|
|||
|
'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=1))),
|
|||
|
'ShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=0))),
|
|||
|
'ShearY': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=1))),
|
|||
|
|
|||
|
## Color TF (Expect image in the range of [0, 1]) ##
|
|||
|
'Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
|||
|
'Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
|||
|
'Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
|||
|
'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
|||
|
'Posterize': (lambda x, mag: posterize(x, bits=rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient
|
|||
|
'Solarize': (lambda x, mag: solarize(x, thresholds=rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1]
|
|||
|
|
|||
|
#Non fonctionnel
|
|||
|
#'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent)
|
|||
|
#'Equalize': (lambda mag: None),
|
|||
|
}
|
|||
|
'''
|
|||
|
TF_dict={ #Dataugv5
|
|||
|
## Geometric TF ##
|
|||
|
'Identity' : (lambda x, mag: x),
|
|||
|
'FlipUD' : (lambda x, mag: flipUD(x)),
|
|||
|
'FlipLR' : (lambda x, mag: flipLR(x)),
|
|||
|
'Rotate': (lambda x, mag: rotate(x, angle=rand_floats(size=x.shape[0], mag=mag, maxval=30))),
|
|||
|
'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=0))),
|
|||
|
'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=1))),
|
|||
|
'ShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=0))),
|
|||
|
'ShearY': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=1))),
|
|||
|
|
|||
|
## Color TF (Expect image in the range of [0, 1]) ##
|
|||
|
'Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
|||
|
'Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
|||
|
'Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
|||
|
'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
|||
|
'Posterize': (lambda x, mag: posterize(x, bits=rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient
|
|||
|
'Solarize': (lambda x, mag: solarize(x, thresholds=rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1]
|
|||
|
|
|||
|
#Color TF (Common mag scale)
|
|||
|
'+Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
|
|||
|
'+Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
|
|||
|
'+Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
|
|||
|
'+Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
|
|||
|
'-Contrast': (lambda x, mag: contrast(x, contrast_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
|
|||
|
'-Color':(lambda x, mag: color(x, color_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
|
|||
|
'-Brightness':(lambda x, mag: brightness(x, brightness_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
|
|||
|
'-Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
|
|||
|
'=Posterize': (lambda x, mag: posterize(x, bits=invScale_rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient
|
|||
|
'=Solarize': (lambda x, mag: solarize(x, thresholds=invScale_rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1]
|
|||
|
|
|||
|
|
|||
|
'BRotate': (lambda x, mag: rotate(x, angle=rand_floats(size=x.shape[0], mag=mag, maxval=30*3))),
|
|||
|
'BTranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20*3), zero_pos=0))),
|
|||
|
'BTranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20*3), zero_pos=1))),
|
|||
|
'BShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3*3), zero_pos=0))),
|
|||
|
'BShearY': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3*3), zero_pos=1))),
|
|||
|
|
|||
|
'BadTranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=20*2, maxval=20*3), zero_pos=0))),
|
|||
|
'BadTranslateX_neg': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=-20*3, maxval=-20*2), zero_pos=0))),
|
|||
|
'BadTranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=20*2, maxval=20*3), zero_pos=1))),
|
|||
|
'BadTranslateY_neg': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=-20*3, maxval=-20*2), zero_pos=1))),
|
|||
|
|
|||
|
'BadColor':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))),
|
|||
|
'BadSharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))),
|
|||
|
'BadContrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))),
|
|||
|
'BadBrightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))),
|
|||
|
|
|||
|
#Non fonctionnel
|
|||
|
#'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent)
|
|||
|
#'Equalize': (lambda mag: None),
|
|||
|
}
|
|||
|
|
|||
|
TF_no_mag={'Identity', 'FlipUD', 'FlipLR'}
|
|||
|
TF_ignore_mag= TF_no_mag | {'Solarize', 'Posterize'}
|
|||
|
|
|||
|
def int_image(float_image): #ATTENTION : legere perte d'info (granularite : 1/256 = 0.0039)
|
|||
|
return (float_image*255.).type(torch.uint8)
|
|||
|
|
|||
|
def float_image(int_image):
|
|||
|
return int_image.type(torch.float)/255.
|
|||
|
|
|||
|
#def rand_inverse(value):
|
|||
|
# return value if random.random() < 0.5 else -value
|
|||
|
|
|||
|
#def rand_int(mag, maxval, minval=None): #[(-maxval,minval), maxval]
|
|||
|
# real_max = int_parameter(mag, maxval=maxval)
|
|||
|
# if not minval : minval = -real_max
|
|||
|
# return random.randint(minval, real_max)
|
|||
|
|
|||
|
#def rand_float(mag, maxval, minval=None): #[(-maxval,minval), maxval]
|
|||
|
# real_max = float_parameter(mag, maxval=maxval)
|
|||
|
# if not minval : minval = -real_max
|
|||
|
# return random.uniform(minval, real_max)
|
|||
|
|
|||
|
def rand_floats(size, mag, maxval, minval=None): #[(-maxval,minval), maxval]
|
|||
|
real_mag = float_parameter(mag, maxval=maxval)
|
|||
|
if not minval : minval = -real_mag
|
|||
|
#return random.uniform(minval, real_max)
|
|||
|
return minval + (real_mag-minval) * torch.rand(size, device=mag.device) #[min_val, real_mag]
|
|||
|
|
|||
|
def invScale_rand_floats(size, mag, maxval, minval):
|
|||
|
#Mag=[0,PARAMETER_MAX] => [PARAMETER_MAX, 0] = [maxval, minval]
|
|||
|
real_mag = float_parameter(float(PARAMETER_MAX) - mag, maxval=maxval-minval)+minval
|
|||
|
return real_mag + (maxval-real_mag) * torch.rand(size, device=mag.device) #[real_mag, max_val]
|
|||
|
|
|||
|
def zero_stack(tensor, zero_pos):
|
|||
|
if zero_pos==0:
|
|||
|
return torch.stack((tensor, torch.zeros((tensor.shape[0],), device=tensor.device)), dim=1)
|
|||
|
if zero_pos==1:
|
|||
|
return torch.stack((torch.zeros((tensor.shape[0],), device=tensor.device), tensor), dim=1)
|
|||
|
else:
|
|||
|
raise Exception("Invalid zero_pos : ", zero_pos)
|
|||
|
|
|||
|
#https://github.com/tensorflow/models/blob/fc2056bce6ab17eabdc139061fef8f4f2ee763ec/research/autoaugment/augmentation_transforms.py#L137
|
|||
|
PARAMETER_MAX = 1 # What is the max 'level' a transform could be predicted
|
|||
|
def float_parameter(level, maxval):
|
|||
|
"""Helper function to scale `val` between 0 and maxval .
|
|||
|
Args:
|
|||
|
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
|
|||
|
maxval: Maximum value that the operation can have. This will be scaled
|
|||
|
to level/PARAMETER_MAX.
|
|||
|
Returns:
|
|||
|
A float that results from scaling `maxval` according to `level`.
|
|||
|
"""
|
|||
|
|
|||
|
#return float(level) * maxval / PARAMETER_MAX
|
|||
|
return (level * maxval / PARAMETER_MAX)#.to(torch.float)
|
|||
|
|
|||
|
#def int_parameter(level, maxval): #Perte de gradient
|
|||
|
"""Helper function to scale `val` between 0 and maxval .
|
|||
|
Args:
|
|||
|
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
|
|||
|
maxval: Maximum value that the operation can have. This will be scaled
|
|||
|
to level/PARAMETER_MAX.
|
|||
|
Returns:
|
|||
|
An int that results from scaling `maxval` according to `level`.
|
|||
|
"""
|
|||
|
#return int(level * maxval / PARAMETER_MAX)
|
|||
|
# return (level * maxval / PARAMETER_MAX)
|
|||
|
|
|||
|
def flipLR(x):
|
|||
|
device = x.device
|
|||
|
(batch_size, channels, h, w) = x.shape
|
|||
|
|
|||
|
M =torch.tensor( [[[-1., 0., w-1],
|
|||
|
[ 0., 1., 0.],
|
|||
|
[ 0., 0., 1.]]], device=device).expand(batch_size,-1,-1)
|
|||
|
|
|||
|
# warp the original image by the found transform
|
|||
|
return kornia.warp_perspective(x, M, dsize=(h, w))
|
|||
|
|
|||
|
def flipUD(x):
|
|||
|
device = x.device
|
|||
|
(batch_size, channels, h, w) = x.shape
|
|||
|
|
|||
|
M =torch.tensor( [[[ 1., 0., 0.],
|
|||
|
[ 0., -1., h-1],
|
|||
|
[ 0., 0., 1.]]], device=device).expand(batch_size,-1,-1)
|
|||
|
|
|||
|
# warp the original image by the found transform
|
|||
|
return kornia.warp_perspective(x, M, dsize=(h, w))
|
|||
|
|
|||
|
def rotate(x, angle):
|
|||
|
return kornia.rotate(x, angle=angle.type(torch.float)) #Kornia ne supporte pas les int
|
|||
|
|
|||
|
def translate(x, translation):
|
|||
|
#print(translation)
|
|||
|
return kornia.translate(x, translation=translation.type(torch.float)) #Kornia ne supporte pas les int
|
|||
|
|
|||
|
def shear(x, shear):
|
|||
|
return kornia.shear(x, shear=shear)
|
|||
|
|
|||
|
def contrast(x, contrast_factor):
|
|||
|
return kornia.adjust_contrast(x, contrast_factor=contrast_factor) #Expect image in the range of [0, 1]
|
|||
|
|
|||
|
#https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageEnhance.py
|
|||
|
def color(x, color_factor):
|
|||
|
(batch_size, channels, h, w) = x.shape
|
|||
|
|
|||
|
gray_x = kornia.rgb_to_grayscale(x)
|
|||
|
gray_x = gray_x.repeat_interleave(channels, dim=1)
|
|||
|
return blend(gray_x, x, color_factor).clamp(min=0.0,max=1.0) #Expect image in the range of [0, 1]
|
|||
|
|
|||
|
def brightness(x, brightness_factor):
|
|||
|
device = x.device
|
|||
|
|
|||
|
return blend(torch.zeros(x.size(), device=device), x, brightness_factor).clamp(min=0.0,max=1.0) #Expect image in the range of [0, 1]
|
|||
|
|
|||
|
def sharpeness(x, sharpness_factor):
|
|||
|
device = x.device
|
|||
|
(batch_size, channels, h, w) = x.shape
|
|||
|
|
|||
|
k = torch.tensor([[[ 1., 1., 1.],
|
|||
|
[ 1., 5., 1.],
|
|||
|
[ 1., 1., 1.]]], device=device) #Smooth Filter : https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageFilter.py
|
|||
|
smooth_x = kornia.filter2D(x, kernel=k, border_type='reflect', normalized=True) #Peut etre necessaire de s'occuper du channel Alhpa differement
|
|||
|
|
|||
|
return blend(smooth_x, x, sharpness_factor).clamp(min=0.0,max=1.0) #Expect image in the range of [0, 1]
|
|||
|
|
|||
|
#https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py
|
|||
|
def posterize(x, bits):
|
|||
|
bits = bits.type(torch.uint8) #Perte du gradient
|
|||
|
x = int_image(x) #Expect image in the range of [0, 1]
|
|||
|
|
|||
|
mask = ~(2 ** (8 - bits) - 1).type(torch.uint8)
|
|||
|
|
|||
|
(batch_size, channels, h, w) = x.shape
|
|||
|
mask = mask.unsqueeze(dim=1).expand(-1,channels).unsqueeze(dim=2).expand(-1,channels, h).unsqueeze(dim=3).expand(-1,channels, h, w) #Il y a forcement plus simple ...
|
|||
|
|
|||
|
return float_image(x & mask)
|
|||
|
|
|||
|
def auto_contrast(x): #PAS OPTIMISE POUR DES BATCH #EXTRA LENT
|
|||
|
# Optimisation : Application de LUT efficace / Calcul d'histogramme par batch/channel
|
|||
|
print("Warning : Pas encore check !")
|
|||
|
(batch_size, channels, h, w) = x.shape
|
|||
|
x = int_image(x) #Expect image in the range of [0, 1]
|
|||
|
#print('Start',x[0])
|
|||
|
for im_idx, img in enumerate(x.chunk(batch_size, dim=0)): #Operation par image
|
|||
|
#print(img.shape)
|
|||
|
for chan_idx, chan in enumerate(img.chunk(channels, dim=1)): # Operation par channel
|
|||
|
#print(chan.shape)
|
|||
|
hist = torch.histc(chan, bins=256, min=0, max=255) #PAS DIFFERENTIABLE
|
|||
|
|
|||
|
# find lowest/highest samples after preprocessing
|
|||
|
for lo in range(256):
|
|||
|
if hist[lo]:
|
|||
|
break
|
|||
|
for hi in range(255, -1, -1):
|
|||
|
if hist[hi]:
|
|||
|
break
|
|||
|
if hi <= lo:
|
|||
|
# don't bother
|
|||
|
pass
|
|||
|
else:
|
|||
|
scale = 255.0 / (hi - lo)
|
|||
|
offset = -lo * scale
|
|||
|
for ix in range(256):
|
|||
|
n_ix = int(ix * scale + offset)
|
|||
|
if n_ix < 0: n_ix = 0
|
|||
|
elif n_ix > 255: n_ix = 255
|
|||
|
|
|||
|
chan[chan==ix]=n_ix
|
|||
|
x[im_idx, chan_idx]=chan
|
|||
|
|
|||
|
#print('End',x[0])
|
|||
|
return float_image(x)
|
|||
|
|
|||
|
def equalize(x): #PAS OPTIMISE POUR DES BATCH
|
|||
|
raise Exception(self, "not implemented")
|
|||
|
# Optimisation : Application de LUT efficace / Calcul d'histogramme par batch/channel
|
|||
|
(batch_size, channels, h, w) = x.shape
|
|||
|
x = int_image(x) #Expect image in the range of [0, 1]
|
|||
|
#print('Start',x[0])
|
|||
|
for im_idx, img in enumerate(x.chunk(batch_size, dim=0)): #Operation par image
|
|||
|
#print(img.shape)
|
|||
|
for chan_idx, chan in enumerate(img.chunk(channels, dim=1)): # Operation par channel
|
|||
|
#print(chan.shape)
|
|||
|
hist = torch.histc(chan, bins=256, min=0, max=255) #PAS DIFFERENTIABLE
|
|||
|
|
|||
|
return float_image(x)
|
|||
|
|
|||
|
def solarize(x, thresholds):
|
|||
|
batch_size, channels, h, w = x.shape
|
|||
|
#imgs=[]
|
|||
|
#for idx, t in enumerate(thresholds): #Operation par image
|
|||
|
# mask = x[idx] > t #Perte du gradient
|
|||
|
#In place
|
|||
|
# inv_x = 1-x[idx][mask]
|
|||
|
# x[idx][mask]=inv_x
|
|||
|
#
|
|||
|
|
|||
|
#Out of place
|
|||
|
# im = x[idx]
|
|||
|
# inv_x = 1-im[mask]
|
|||
|
|
|||
|
# imgs.append(im.masked_scatter(mask,inv_x))
|
|||
|
|
|||
|
#idxs=torch.tensor(range(x.shape[0]), device=x.device)
|
|||
|
#idxs=idxs.unsqueeze(dim=1).expand(-1,channels).unsqueeze(dim=2).expand(-1,channels, h).unsqueeze(dim=3).expand(-1,channels, h, w) #Il y a forcement plus simple ...
|
|||
|
#x=x.scatter(dim=0, index=idxs, src=torch.stack(imgs))
|
|||
|
#
|
|||
|
|
|||
|
thresholds = thresholds.unsqueeze(dim=1).expand(-1,channels).unsqueeze(dim=2).expand(-1,channels, h).unsqueeze(dim=3).expand(-1,channels, h, w) #Il y a forcement plus simple ...
|
|||
|
#print(thresholds.grad_fn)
|
|||
|
x=torch.where(x>thresholds,1-x, x)
|
|||
|
#print(mask.grad_fn)
|
|||
|
|
|||
|
#x=x.min(thresholds)
|
|||
|
#inv_x = 1-x[mask]
|
|||
|
#x=x.where(x<thresholds,1-x)
|
|||
|
#x[mask]=inv_x
|
|||
|
#x=x.masked_scatter(mask, inv_x)
|
|||
|
|
|||
|
return x
|
|||
|
|
|||
|
#https://github.com/python-pillow/Pillow/blob/9c78c3f97291bd681bc8637922d6a2fa9415916c/src/PIL/Image.py#L2818
|
|||
|
def blend(x,y,alpha): #out = image1 * (1.0 - alpha) + image2 * alpha
|
|||
|
#return kornia.add_weighted(src1=x, alpha=(1-alpha), src2=y, beta=alpha, gamma=0) #out=src1∗alpha+src2∗beta+gamma #Ne fonctionne pas pour des batch de alpha
|
|||
|
|
|||
|
if not isinstance(x, torch.Tensor):
|
|||
|
raise TypeError("x should be a tensor. Got {}".format(type(x)))
|
|||
|
|
|||
|
if not isinstance(y, torch.Tensor):
|
|||
|
raise TypeError("y should be a tensor. Got {}".format(type(y)))
|
|||
|
|
|||
|
(batch_size, channels, h, w) = x.shape
|
|||
|
alpha = alpha.unsqueeze(dim=1).expand(-1,channels).unsqueeze(dim=2).expand(-1,channels, h).unsqueeze(dim=3).expand(-1,channels, h, w) #Il y a forcement plus simple ...
|
|||
|
res = x*(1-alpha) + y*alpha
|
|||
|
|
|||
|
return res
|