smart_augmentation/higher/smart_aug/nets/wideresnet_cifar.py

119 lines
3.6 KiB
Python
Raw Normal View History

2024-08-20 11:53:35 +02:00
"""
wide resnet for cifar in pytorch
Reference:
[1] S. Zagoruyko and N. Komodakis. Wide residual networks. In BMVC, 2016.
"""
import torch
import torch.nn as nn
import math
#from models.resnet_cifar import BasicBlock
def conv3x3(in_planes, out_planes, stride=1):
" 3x3 convolution with padding "
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion=1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Wide_ResNet_Cifar(nn.Module):
def __init__(self, block, layers, wfactor, num_classes=10):
super(Wide_ResNet_Cifar, self).__init__()
self.depth=layers[0]*6+2
self.widen_factor=wfactor
self.inplanes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 16*wfactor, layers[0])
self.layer2 = self._make_layer(block, 32*wfactor, layers[1], stride=2)
self.layer3 = self._make_layer(block, 64*wfactor, layers[2], stride=2)
self.avgpool = nn.AvgPool2d(8, stride=1)
self.fc = nn.Linear(64*block.expansion*wfactor, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion)
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def __str__(self):
""" Get name of model
"""
return "Wide_ResNet_cifar%d_%d"%(self.depth,self.widen_factor)
def wide_resnet_cifar(depth, width, **kwargs):
assert (depth - 2) % 6 == 0
n = int((depth - 2) / 6)
return Wide_ResNet_Cifar(BasicBlock, [n, n, n], width, **kwargs)
if __name__=='__main__':
net = wide_resnet_cifar(20, 10)
y = net(torch.randn(1, 3, 32, 32))
print(isinstance(net, Wide_ResNet_Cifar))
print(y.size())