smart_augmentation/higher/smart_aug/smart_aug_example.py

60 lines
1.6 KiB
Python
Raw Normal View History

2020-06-23 07:55:40 -07:00
""" Example use of smart augmentation.
"""
from LeNet import *
from dataug import *
from train_utils import *
tf_config='../config/base_tf_config.json'
TF_loader=TF_loader()
device = torch.device('cuda') #Select device to use
if device == torch.device('cpu'):
device_name = 'CPU'
else:
device_name = torch.cuda.get_device_name(device)
##########################################
if __name__ == "__main__":
#Parameters
n_inner_iter = 1
epochs = 150
optim_param={
'Meta':{
'optim':'Adam',
'lr':1e-2, #1e-2
},
'Inner':{
'optim': 'SGD',
'lr':1e-2, #1e-2/1e-1 (ResNet)
'momentum':0.9, #0.9
'decay':0.0005, #0.0005
'nesterov':False, #False (True: Bad behavior w/ Data_aug)
'scheduler':'cosine', #None, 'cosine', 'multiStep', 'exponential'
}
}
#Models
model = LeNet(3,10)
#Smart_aug initialisation
tf_dict, tf_ignore_mag =TF_loader.load_TF_dict(tf_config)
model = Higher_model(model) #run_dist_dataugV3
aug_model = Augmented_model(
Data_augV5(TF_dict=tf_dict,
N_TF=3,
mix_dist=0.8,
fixed_prob=False,
fixed_mag=False,
shared_mag=False,
TF_ignore_mag=tf_ignore_mag),
model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
# Training
trained_model = run_simple_smartaug(model=aug_model, epochs=epochs, inner_it=n_inner_iter, opt_param=optim_param)