LivingMachine/Code/fonction.c
AntoineUPMC 8abf618e5b Bip
2017-05-31 10:13:39 +02:00

282 lines
8.4 KiB
C

/**
* \file fonction.c
* \author Jacques / Antoine
* \date avril - mai 2017
* \brief Fonctions utilisés dans les programmes
*
*/
#include "fonction.h"
void maj_angle(int vecX, int vecY, int rayon, double* angle){
//On ajustera coeff fonction du rayon. Si la cible est à une distance 5*r, il sera 5x plus rapide que s'il était à 1*r
double coeffx, coeffy;
int l0, l1;
//printf("-MAJ_ANGLE...Valeur maj_angle arguments : %d %d %d\n\tAnciens angles : %d %d\n\t",vecX,vecY,rayon,(int)angle[0],(int)angle[1]);
//Ajout d'un angle moteur pondéré par la distance
coeffx = -0.2*vecX/rayon;
coeffy = 0.2*vecY/rayon;
angle[0] += coeffx;
angle[1] += coeffy;
//Majoration - minoration des angles moteurs
l0 = limite_moteur(angle[0]);
l1 = limite_moteur(angle[1]);
if (l0 != 0) angle[0] = l0;
if (l1 != 0) angle[1] = l1;
//printf("Nouveaux angles : %lf %lf %d %d\n",angle[0],angle[1],(int)angle[0],(int)angle[0]);
}
int ajust_pos(int pos, int ref){
if (pos > ref) return 0;
else return pos;
}
int limite_moteur(int val_pwm){
int MAX_PWM = 130, MIN_PWM = 30;
if (val_pwm > MAX_PWM){
return MAX_PWM;
}
else if (val_pwm < MIN_PWM){
return MIN_PWM;
}
else{
return 0;
}
}
void controle_moteur(double* angle){
//Ouverture port serie
FILE* fichier = NULL;
fichier = fopen("/dev/ttyACM0","w");
if(fichier==NULL){
printf("Erreur ouverture fichier\n");
perror("fopen failed for /dev/ttyACM0" );
exit( EXIT_FAILURE );
}
//Ecriture angles
fprintf(fichier,"%d\n",(int)angle[0]);
fprintf(fichier,"%d\n",(int)angle[1]);
//Fermeture
fclose(fichier);
return;
}
int image_CV2SFML(IplImage* imcv, sf::Image imFlux){
int R, G, B;
int w = imcv->widthStep;
char* ptr = imcv->imageData;
imFlux.create(imcv->width,imcv->height, NULL); //Initialise une image vide
for( int y=0; y<imcv->height; y++ ) {
//uchar* ptr = (uchar*) ( imcv->imageData + y * imcv->widthStep );
for( int x=0; x<imcv->width; x++ ) {
//Recupération du pixel
B = ptr[y*w + 3*x];
G = ptr[y*w + 3*x + 1];
R = ptr[y*w + 3*x + 2];
//Ecriture du pixel associé
imFlux.setPixel(x,y,sf::Color(R,G,B,1)); //Alpha channel = 1
}
}
return 0;
}
void traitement(IplImage* frame, IplImage* HSV, IplImage* Binaire, int LowH, int HighH, int LowS, int HighS, int LowV, int HighV){ //Effectue une binarisation de frame en fonction des bornes HSV
// Covert color space to HSV as it is much easier to filter colors in the HSV color-space.
cvCvtColor(frame, HSV, CV_BGR2HSV);
//Blur
cvSmooth( HSV, HSV, CV_GAUSSIAN, 15, 0,0,0); //suppression des parasites par flou gaussien
//Binarisation
CvScalar valinf={(double)LowH,(double)LowS,(double)LowV};
CvScalar valsup={(double)HighH,(double)HighS,(double)HighV};
cvInRangeS(HSV, valinf,valsup, Binaire);
//En cas d'erreur sur les trois ligne précédentes
//cvInRangeS(HSV, CvScalar(LowH,LowS,LowV),CvScalar(HighH,HighS,HighV), Binaire);
//cvSmooth( Binaire, Binaire, CV_GAUSSIAN, 9, 9 ); //Legère suppression des parasites
}
void Position_moy(IplImage* Binaire, int* posX, int * posY){ //Effectue le baricentre des pixels d'une image binaire pour obtenir la postion de l'objet
CvMoments *moments = (CvMoments*)malloc(sizeof(CvMoments));
cvMoments(Binaire, moments, 1);
// The actual moment values
double moment10 = cvGetSpatialMoment(moments, 1, 0);
double moment01 = cvGetSpatialMoment(moments, 0, 1);
double area = cvGetCentralMoment(moments, 0, 0);
*posX = moment10/area;
*posY = moment01/area;
free(moments);
}
void config(int* LowH, int* HighH, int* LowS, int* HighS, int* LowV, int* HighV){ //Affiche le panneau de configuration de tracking avec les arguments comme valeur de base
cvNamedWindow("Control", CV_WINDOW_AUTOSIZE); //create a window called "Control"
//Create trackbars in "Control" window
cvCreateTrackbar("LowH", "Control", LowH, 179,NULL); //Hue (0 - 179)
cvCreateTrackbar("HighH", "Control", HighH, 179,NULL);
cvCreateTrackbar("LowS", "Control", LowS, 255,NULL); //Saturation (0 - 255)
cvCreateTrackbar("HighS", "Control", HighS, 255,NULL);
cvCreateTrackbar("LowV", "Control", LowV, 255,NULL); //Value (0 - 255)
cvCreateTrackbar("HighV", "Control", HighV, 255,NULL);
}
void affichage_config(IplImage* frame, IplImage* HSV, IplImage* Binaire){ //Affiche le flux vidéos et ses différent traitements
// Create a window in which the captured images will be presented
cvNamedWindow( "HSV", CV_WINDOW_AUTOSIZE );
cvNamedWindow( "Binaire", CV_WINDOW_AUTOSIZE );
cvNamedWindow( "Camera", CV_WINDOW_AUTOSIZE );
cvShowImage( "HSV", HSV); // Original stream in the HSV color space
cvShowImage( "Binaire", Binaire); // The stream after color filtering
cvShowImage( "Camera", frame ); // Flux caméra avec tracking objet
}
void Affichage_Tracking(IplImage* frame, int posX, int posY, int width, int height){ //Dessine les informations de tracking sur frame
//Affichage zone suivie objet
cvCircle(frame, cvPoint(width/2,height/2), height*JEU, CV_RGB(0, 255, 0), 4, 8, 0 );
if(posX<5&&posY<5){ //Si aucun objet spotted, pointeur rouge au centre
posX=width/2;
posY=height/2;
cvLine(frame, cvPoint(posX-20,posY), cvPoint(posX+20,posY), CV_RGB(255, 0, 0), 4, 8, 0 );
cvLine(frame, cvPoint(posX,posY-20), cvPoint(posX,posY+20), CV_RGB(255, 0, 0), 4, 8, 0 );
}
else{ //Objet spotted
//Affichage position de l'objet
cvLine(frame, cvPoint(posX-20,posY), cvPoint(posX+20,posY), CV_RGB(0, 0, 255), 4, 8, 0 );
cvLine(frame, cvPoint(posX,posY-20), cvPoint(posX,posY+20), CV_RGB(0, 0, 255), 4, 8, 0 );
}
}
CvHaarClassifierCascade* init_cascade(){
// Create a new Haar classifier
CvHaarClassifierCascade* cascade = 0;
const char* cascade_name = "haarcascade_frontalface_alt.xml";
cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );
// Check whether the cascade has loaded successfully. Else report and error and quit
if( !cascade ){
fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
perror(" ");
return NULL;
}
return cascade;
}
// Function to detect and draw any faces that is present in an image
void detect_and_draw( IplImage* img, CvHaarClassifierCascade* cascade, face** tab_face)
{
// Create memory for calculations
static CvMemStorage* storage = 0;
int scale = 1;
// Create a new image based on the input image
IplImage* temp = cvCreateImage( cvSize(img->width/scale,img->height/scale), 8, 3 );
// Create two points to represent the face locations
CvPoint pt1, pt2;
int i;
// Allocate the memory storage
storage = cvCreateMemStorage(0);
// Create a new named window with title: result
cvNamedWindow( "result", 1 );
// Clear the memory storage which was used before
cvClearMemStorage( storage );
// Find whether the cascade is loaded, to find the faces. If yes, then:
if( cascade ){
// There can be more than one face in an image. So create a growable sequence of faces.
// Detect the objects and store them in the sequence
CvSeq* faces = cvHaarDetectObjects( img, cascade, storage,1.1, 2, 0, cvSize(60, 60),cvSize(500, 500));
//Reset faces
tab_face[0]->largeur = 0;
tab_face[1]->largeur = 0;
// Loop the number of faces found.
for( i = 0; i < (faces ? faces->total : 0); i++ ){
// Create a new rectangle for drawing the face
CvRect* r = (CvRect*)cvGetSeqElem( faces, i );
// Find the dimensions of the face,and scale it if necessary
pt1.x = r->x*scale;
pt2.x = (r->x+r->width)*scale;
pt1.y = r->y*scale;
pt2.y = (r->y+r->height)*scale;
// Draw the rectangle in the input image
cvRectangle( img, pt1, pt2, CV_RGB(255,0,0), 3, 8, 0 );
if(i < MAX_FACE){
tab_face[i]->point.x = (pt1.x + pt2.x)/2;
tab_face[i]->point.y = (pt1.y + pt2.y)/2;
tab_face[i]->largeur = r->width;
//printf("VALEURS FACES n°%d : %d %d %d\n",i, tab_face[i]->point.x,tab_face[i]->point.y,tab_face[i]->largeur);
}
}
}
// Show the image in the window named "result"
cvShowImage( "result", img );
//free
cvReleaseImage( &temp );
}
//Renvoie la couleur moyenne de rec_face
void get_color(IplImage* image, face* rec_face, int* BGR){
CvScalar colors;
int largeur = rec_face->largeur;
cvSetImageROI(image,cvRect(rec_face->point.x -largeur/2, rec_face->point.y -largeur/2, largeur,largeur));
colors = cvAvg(image);
cvResetImageROI(image);
BGR[0] = colors.val[0];
BGR[1] = colors.val[1];
BGR[2] = colors.val[2];
}