#include "ASIFT_matcher.hpp" int main(int argc, char **argv) { if ((argc !=2) && (argc != 3) && (argc != 4)) { std::cerr << " ******************************************************************************* " << std::endl << " *************************** ASIFT image matching **************************** " << std::endl << " ******************************************************************************* " << std::endl << "Usage: " << argv[0] << " imgIn.png [Tilt number option] [Resize option: 0/1] " << std::endl << "- imgIn.png: input image (in PNG format). " << std::endl << "- [Tilt number option: 1..n]. " << std::endl << "- [Resize option: 0/1]. 1: input images resize to 800x600 (default). 0: no resize. " << std::endl << " ******************************************************************************* " << std::endl << " ********************* Jean-Michel Morel, Guoshen Yu, 2010 ******************** " << std::endl << " ******************************************************************************* " << std::endl; return 1; } //////////////////////////////////////////////// Input float * iarr1; size_t w1, h1; if (NULL == (iarr1 = read_png_f32_gray(argv[1], &w1, &h1))) { std::cerr << "Unable to load image file " << argv[1] << std::endl; return 1; } std::vector ipixels1(iarr1, iarr1 + w1 * h1); free(iarr1); /*memcheck*/ ///// Resize the images to area wS*hW in remaining the apsect-ratio ///// Resize if the resize flag is not set or if the flag is set unequal to 0 float wS = IM_X; float hS = IM_Y; float zoom1=0; int wS1=0, hS1=0; vector ipixels1_zoom; int flag_resize = 1; if (argc == 4) { flag_resize = atoi(argv[3]); } if ((argc==2) || (argc == 3) || (flag_resize != 0)) { cout << "WARNING: The input images is resized to " << wS << "x" << hS << " for ASIFT. " << endl << " But the results will be normalized to the original image size." << endl << endl; float InitSigma_aa = 1.6; float fproj_p, fproj_bg; char fproj_i; float *fproj_x4, *fproj_y4; int fproj_o; fproj_o = 3; fproj_p = 0; fproj_i = 0; fproj_bg = 0; fproj_x4 = 0; fproj_y4 = 0; float areaS = wS * hS; // Resize image 1 float area1 = w1 * h1; zoom1 = sqrt(area1/areaS); wS1 = (int) (w1 / zoom1); hS1 = (int) (h1 / zoom1); int fproj_sx = wS1; int fproj_sy = hS1; float fproj_x1 = 0; float fproj_y1 = 0; float fproj_x2 = wS1; float fproj_y2 = 0; float fproj_x3 = 0; float fproj_y3 = hS1; /* Anti-aliasing filtering along vertical direction */ if ( zoom1 > 1 ) { float sigma_aa = InitSigma_aa * zoom1 / 2; GaussianBlur1D(ipixels1,w1,h1,sigma_aa,1); GaussianBlur1D(ipixels1,w1,h1,sigma_aa,0); } // simulate a tilt: subsample the image along the vertical axis by a factor of t. ipixels1_zoom.resize(wS1*hS1); fproj (ipixels1, ipixels1_zoom, w1, h1, &fproj_sx, &fproj_sy, &fproj_bg, &fproj_o, &fproj_p, &fproj_i , fproj_x1 , fproj_y1 , fproj_x2 , fproj_y2 , fproj_x3 , fproj_y3, fproj_x4, fproj_y4); } else { ipixels1_zoom.resize(w1*h1); ipixels1_zoom = ipixels1; wS1 = w1; hS1 = h1; zoom1 = 1; } std::string refData[] = { "book_training/train_image_000.png", "book_training/train_image_001.png"}; ASIFT_matcher matcher; matcher.setResizeImg(true); matcher.addReference(refData[0].c_str(), 7); matcher.addReference(refData[1].c_str(), 7); // matcher.print(); // matcher.match(refData[3].c_str(), 4); if(argc>2) matcher.match(ipixels1_zoom, wS1, hS1, atoi(argv[2])); else matcher.match(ipixels1_zoom, wS1, hS1); vector NbMatch = matcher.getNbMatchs(); cout<<"Nb match : "< besoin du coef zoom float *opixelsASIFT = new float[w1*h1]; /////////////////////////////////////////////////////////////////// Copy image to output for(int j = 0; j < (int) h1; j++) for(int i = 0; i < (int) w1; i++) opixelsASIFT[j*w1+i] = ipixels1[j*w1+i]; //////////////////////////////////////////////////////////////////// Draw ROI draw_square(opixelsASIFT, x, y, w, h, 255, w1, h1); ///////////////////////////////////////////////////////////////// Save imgOut write_png_f32("./results/res.png", opixelsASIFT, w1, h1, 1); delete[] opixelsASIFT; /*memcheck*/ // /////////// Output image containing line matches (the two images are concatenated one aside the other) // int woH = w1+w2+band_w; // int hoH = MAX(h1,h2); // float *opixelsASIFT_H = new float[woH*hoH]; // for(int j = 0; j < (int) hoH; j++) // for(int i = 0; i < (int) woH; i++) opixelsASIFT_H[j*woH+i] = 255; // /////////////////////////////////////////////////////////////////// Copy both images to output // for(int j = 0; j < (int) h1; j++) // for(int i = 0; i < (int) w1; i++) opixelsASIFT_H[j*woH+i] = ipixels1[j*w1+i]; // for(int j = 0; j < (int) h2; j++) // for(int i = 0; i < (int) w2; i++) opixelsASIFT_H[j*woH + w1 + band_w + i] = ipixels2[j*w2 + i]; // //////////////////////////////////////////////////////////////////// Draw matches // matchingslist::iterator ptrH = matchings.begin(); // for(int i=0; i < (int) matchings.size(); i++, ptrH++) // { // draw_line(opixelsASIFT_H, (int) (zoom1*ptrH->first.x), (int) (zoom1*ptrH->first.y), // (int) (zoom2*ptrH->second.x) + w1 + band_w, (int) (zoom2*ptrH->second.y), 255.0f, woH, hoH); // } // ///////////////////////////////////////////////////////////////// Save imgOut // write_png_f32(argv[4], opixelsASIFT_H, woH, hoH, 1); // delete[] opixelsASIFT_H; /*memcheck*/ // ////// Write the coordinates of the matched points (row1, col1, row2, col2) to the file argv[5] // std::ofstream file(argv[5]); // if (file.is_open()) // { // // Write the number of matchings in the first line // file << num_matchings << std::endl; // matchingslist::iterator ptr = matchings.begin(); // for(int i=0; i < (int) matchings.size(); i++, ptr++) // { // file << zoom1*ptr->first.x << " " << zoom1*ptr->first.y << " " << zoom2*ptr->second.x << // " " << zoom2*ptr->second.y << std::endl; // } // } // else // { // std::cerr << "Unable to open the file matchings."; // } // file.close(); // // Write all the keypoints (row, col, scale, orientation, desciptor (128 integers)) to // // the file argv[6] (so that the users can match the keypoints with their own matching algorithm if they wish to) // // keypoints in the 1st image // std::ofstream file_key1(argv[6]); // if (file_key1.is_open()) // { // // Follow the same convention of David Lowe: // // the first line contains the number of keypoints and the length of the desciptors (128) // file_key1 << num_keys1 << " " << VecLength << " " << std::endl; // for (int tt = 0; tt < (int) keys1.size(); tt++) // { // for (int rr = 0; rr < (int) keys1[tt].size(); rr++) // { // keypointslist::iterator ptr = keys1[tt][rr].begin(); // for(int i=0; i < (int) keys1[tt][rr].size(); i++, ptr++) // { // file_key1 << zoom1*ptr->x << " " << zoom1*ptr->y << " " << zoom1*ptr->scale << " " << ptr->angle; // for (int ii = 0; ii < (int) VecLength; ii++) // { // file_key1 << " " << ptr->vec[ii]; // } // file_key1 << std::endl; // } // } // } // } // else // { // std::cerr << "Unable to open the file keys1."; // } // file_key1.close(); // ////// keypoints in the 2nd image // std::ofstream file_key2(argv[7]); // if (file_key2.is_open()) // { // // Follow the same convention of David Lowe: // // the first line contains the number of keypoints and the length of the desciptors (128) // file_key2 << num_keys2 << " " << VecLength << " " << std::endl; // for (int tt = 0; tt < (int) keys2.size(); tt++) // { // for (int rr = 0; rr < (int) keys2[tt].size(); rr++) // { // keypointslist::iterator ptr = keys2[tt][rr].begin(); // for(int i=0; i < (int) keys2[tt][rr].size(); i++, ptr++) // { // file_key2 << zoom2*ptr->x << " " << zoom2*ptr->y << " " << zoom2*ptr->scale << " " << ptr->angle; // for (int ii = 0; ii < (int) VecLength; ii++) // { // file_key2 << " " << ptr->vec[ii]; // } // file_key2 << std::endl; // } // } // } // } // else // { // std::cerr << "Unable to open the file keys2."; // } // file_key2.close(); return 0; }