BaxterInterface/ongoing/HaarCascade_tests/classifier/cascade.xml

2192 lines
61 KiB
XML
Raw Normal View History

2018-08-13 11:29:33 +02:00
<?xml version="1.0"?>
<opencv_storage>
<cascade>
<stageType>BOOST</stageType>
<featureType>HAAR</featureType>
<height>40</height>
<width>80</width>
<stageParams>
<boostType>GAB</boostType>
<minHitRate>9.9900001287460327e-01</minHitRate>
<maxFalseAlarm>5.0000000000000000e-01</maxFalseAlarm>
<weightTrimRate>9.4999999999999996e-01</weightTrimRate>
<maxDepth>1</maxDepth>
<maxWeakCount>100</maxWeakCount></stageParams>
<featureParams>
<maxCatCount>0</maxCatCount>
<featSize>1</featSize>
<mode>ALL</mode></featureParams>
<stageNum>20</stageNum>
<stages>
<!-- stage 0 -->
<_>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>-1.0557038784027100e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 82 -6.1255004256963730e-03</internalNodes>
<leafValues>
7.7242046594619751e-01 -7.1225577592849731e-01</leafValues></_>
<_>
<internalNodes>
0 -1 34 -9.1979682445526123e-02</internalNodes>
<leafValues>
8.5950666666030884e-01 -5.6599384546279907e-01</leafValues></_>
<_>
<internalNodes>
0 -1 98 -7.4063672218471766e-04</internalNodes>
<leafValues>
8.4704905748367310e-01 -5.1533699035644531e-01</leafValues></_>
<_>
<internalNodes>
0 -1 11 6.4185885712504387e-03</internalNodes>
<leafValues>
-5.3197431564331055e-01 7.3788273334503174e-01</leafValues></_></weakClassifiers></_>
<!-- stage 1 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-1.1398526430130005e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 126 -1.7777483910322189e-02</internalNodes>
<leafValues>
8.6206895112991333e-01 -4.7945204377174377e-01</leafValues></_>
<_>
<internalNodes>
0 -1 49 2.3743551224470139e-02</internalNodes>
<leafValues>
-4.3439662456512451e-01 8.2215088605880737e-01</leafValues></_>
<_>
<internalNodes>
0 -1 138 -6.0039879754185677e-03</internalNodes>
<leafValues>
7.5790786743164062e-01 -4.6309715509414673e-01</leafValues></_>
<_>
<internalNodes>
0 -1 98 -1.3670222833752632e-03</internalNodes>
<leafValues>
8.6037290096282959e-01 -4.0961334109306335e-01</leafValues></_>
<_>
<internalNodes>
0 -1 69 -9.9409371614456177e-03</internalNodes>
<leafValues>
7.8303009271621704e-01 -5.7429856061935425e-01</leafValues></_></weakClassifiers></_>
<!-- stage 2 -->
<_>
<maxWeakCount>8</maxWeakCount>
<stageThreshold>-9.4922059774398804e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 18 1.0431748814880848e-02</internalNodes>
<leafValues>
-3.4243175387382507e-01 8.5138541460037231e-01</leafValues></_>
<_>
<internalNodes>
0 -1 136 1.7129037529230118e-02</internalNodes>
<leafValues>
-3.1060457229614258e-01 7.9508054256439209e-01</leafValues></_>
<_>
<internalNodes>
0 -1 100 4.0712629561312497e-04</internalNodes>
<leafValues>
-2.9358071088790894e-01 9.7165352106094360e-01</leafValues></_>
<_>
<internalNodes>
0 -1 45 -8.0133148003369570e-04</internalNodes>
<leafValues>
6.3514846563339233e-01 -4.9989247322082520e-01</leafValues></_>
<_>
<internalNodes>
0 -1 70 -1.7988225445151329e-02</internalNodes>
<leafValues>
6.4996314048767090e-01 -4.6733775734901428e-01</leafValues></_>
<_>
<internalNodes>
0 -1 98 -7.3597184382379055e-04</internalNodes>
<leafValues>
6.5466618537902832e-01 -5.3771013021469116e-01</leafValues></_>
<_>
<internalNodes>
0 -1 151 3.4532047808170319e-02</internalNodes>
<leafValues>
-3.3722141385078430e-01 7.8262948989868164e-01</leafValues></_>
<_>
<internalNodes>
0 -1 142 -1.7202894669026136e-03</internalNodes>
<leafValues>
7.3387306928634644e-01 -3.6649671196937561e-01</leafValues></_></weakClassifiers></_>
<!-- stage 3 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-1.4982649087905884e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 109 2.6453498285263777e-03</internalNodes>
<leafValues>
-4.5937961339950562e-01 7.7031421661376953e-01</leafValues></_>
<_>
<internalNodes>
0 -1 77 -4.9049186054617167e-04</internalNodes>
<leafValues>
8.5675507783889771e-01 -3.0365657806396484e-01</leafValues></_>
<_>
<internalNodes>
0 -1 143 -6.9734808057546616e-03</internalNodes>
<leafValues>
6.2530416250228882e-01 -4.0575742721557617e-01</leafValues></_>
<_>
<internalNodes>
0 -1 10 1.7324250191450119e-02</internalNodes>
<leafValues>
-5.4163134098052979e-01 5.3285014629364014e-01</leafValues></_>
<_>
<internalNodes>
0 -1 89 1.7069303430616856e-03</internalNodes>
<leafValues>
-3.0198717117309570e-01 9.2841923236846924e-01</leafValues></_>
<_>
<internalNodes>
0 -1 55 1.9969230517745018e-02</internalNodes>
<leafValues>
-3.6788323521614075e-01 7.8370809555053711e-01</leafValues></_>
<_>
<internalNodes>
0 -1 89 -1.0842503979802132e-03</internalNodes>
<leafValues>
8.2461130619049072e-01 -2.7838116884231567e-01</leafValues></_></weakClassifiers></_>
<!-- stage 4 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-1.4942907094955444e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 128 1.9832536578178406e-02</internalNodes>
<leafValues>
-5.1601421833038330e-01 6.6473990678787231e-01</leafValues></_>
<_>
<internalNodes>
0 -1 28 -1.2135242111980915e-02</internalNodes>
<leafValues>
5.6847703456878662e-01 -5.2866727113723755e-01</leafValues></_>
<_>
<internalNodes>
0 -1 35 1.0051997378468513e-02</internalNodes>
<leafValues>
-2.5192338228225708e-01 7.9386711120605469e-01</leafValues></_>
<_>
<internalNodes>
0 -1 123 3.2060276716947556e-02</internalNodes>
<leafValues>
-3.6736944317817688e-01 5.9266370534896851e-01</leafValues></_>
<_>
<internalNodes>
0 -1 76 -1.2895530089735985e-02</internalNodes>
<leafValues>
6.8578672409057617e-01 -3.1832396984100342e-01</leafValues></_>
<_>
<internalNodes>
0 -1 101 4.8367399722337723e-04</internalNodes>
<leafValues>
-3.4358265995979309e-01 7.5980979204177856e-01</leafValues></_>
<_>
<internalNodes>
0 -1 65 -2.5067629758268595e-04</internalNodes>
<leafValues>
7.2300755977630615e-01 -2.7180227637290955e-01</leafValues></_></weakClassifiers></_>
<!-- stage 5 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-8.9513111114501953e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 21 7.1755228564143181e-03</internalNodes>
<leafValues>
-3.4664765000343323e-01 7.1523916721343994e-01</leafValues></_>
<_>
<internalNodes>
0 -1 50 -1.1159515939652920e-02</internalNodes>
<leafValues>
4.4286754727363586e-01 -6.5785908699035645e-01</leafValues></_>
<_>
<internalNodes>
0 -1 51 -3.6444932222366333e-02</internalNodes>
<leafValues>
6.2337446212768555e-01 -4.2781525850296021e-01</leafValues></_>
<_>
<internalNodes>
0 -1 107 -1.3623120030388236e-03</internalNodes>
<leafValues>
7.0154279470443726e-01 -3.5026982426643372e-01</leafValues></_>
<_>
<internalNodes>
0 -1 165 -7.4735237285494804e-03</internalNodes>
<leafValues>
7.3942059278488159e-01 -2.7020177245140076e-01</leafValues></_>
<_>
<internalNodes>
0 -1 97 -2.7533981483429670e-04</internalNodes>
<leafValues>
5.3899711370468140e-01 -4.1663372516632080e-01</leafValues></_>
<_>
<internalNodes>
0 -1 124 -7.2895870544016361e-03</internalNodes>
<leafValues>
5.0333309173583984e-01 -4.8206123709678650e-01</leafValues></_></weakClassifiers></_>
<!-- stage 6 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-8.8963723182678223e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 34 -8.9364483952522278e-02</internalNodes>
<leafValues>
7.3221755027770996e-01 -4.6583852171897888e-01</leafValues></_>
<_>
<internalNodes>
0 -1 38 2.1431149914860725e-02</internalNodes>
<leafValues>
-4.1563612222671509e-01 6.9622164964675903e-01</leafValues></_>
<_>
<internalNodes>
0 -1 71 -1.1985183227807283e-03</internalNodes>
<leafValues>
7.4425798654556274e-01 -3.7180989980697632e-01</leafValues></_>
<_>
<internalNodes>
0 -1 146 -4.4963032007217407e-02</internalNodes>
<leafValues>
6.4965981245040894e-01 -3.6152300238609314e-01</leafValues></_>
<_>
<internalNodes>
0 -1 97 -4.6658696373924613e-04</internalNodes>
<leafValues>
6.6287922859191895e-01 -3.7917545437812805e-01</leafValues></_>
<_>
<internalNodes>
0 -1 91 3.5744084743782878e-04</internalNodes>
<leafValues>
-2.8912180662155151e-01 7.7132213115692139e-01</leafValues></_>
<_>
<internalNodes>
0 -1 6 -2.3924852721393108e-03</internalNodes>
<leafValues>
-7.3581212759017944e-01 3.5141283273696899e-01</leafValues></_></weakClassifiers></_>
<!-- stage 7 -->
<_>
<maxWeakCount>10</maxWeakCount>
<stageThreshold>-1.5281771421432495e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 110 2.0490270107984543e-03</internalNodes>
<leafValues>
-3.9255014061927795e-01 7.4722838401794434e-01</leafValues></_>
<_>
<internalNodes>
0 -1 144 -1.9460737239569426e-03</internalNodes>
<leafValues>
5.4928964376449585e-01 -3.9800989627838135e-01</leafValues></_>
<_>
<internalNodes>
0 -1 134 1.7054250836372375e-01</internalNodes>
<leafValues>
-2.4620300531387329e-01 8.8145399093627930e-01</leafValues></_>
<_>
<internalNodes>
0 -1 103 3.2776189036667347e-03</internalNodes>
<leafValues>
-2.6399293541908264e-01 8.0348426103591919e-01</leafValues></_>
<_>
<internalNodes>
0 -1 5 -2.6250220835208893e-03</internalNodes>
<leafValues>
-7.3674768209457397e-01 3.2037591934204102e-01</leafValues></_>
<_>
<internalNodes>
0 -1 68 2.0784616470336914e-02</internalNodes>
<leafValues>
-3.5788413882255554e-01 6.9435191154479980e-01</leafValues></_>
<_>
<internalNodes>
0 -1 83 -6.1619927873834968e-04</internalNodes>
<leafValues>
6.4166831970214844e-01 -3.6269333958625793e-01</leafValues></_>
<_>
<internalNodes>
0 -1 94 7.1200872771441936e-03</internalNodes>
<leafValues>
-3.4116935729980469e-01 6.6018533706665039e-01</leafValues></_>
<_>
<internalNodes>
0 -1 113 -3.8107874570414424e-04</internalNodes>
<leafValues>
8.1331157684326172e-01 -2.4599665403366089e-01</leafValues></_>
<_>
<internalNodes>
0 -1 157 2.3992178030312061e-03</internalNodes>
<leafValues>
-2.9936182498931885e-01 6.9683182239532471e-01</leafValues></_></weakClassifiers></_>
<!-- stage 8 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-8.3137303590774536e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 70 -1.5641596168279648e-02</internalNodes>
<leafValues>
6.9363540410995483e-01 -3.6106982827186584e-01</leafValues></_>
<_>
<internalNodes>
0 -1 20 4.5635281130671501e-03</internalNodes>
<leafValues>
-3.0234682559967041e-01 7.3507410287857056e-01</leafValues></_>
<_>
<internalNodes>
0 -1 42 3.0257165431976318e-02</internalNodes>
<leafValues>
-4.2548671364784241e-01 6.1946529150009155e-01</leafValues></_>
<_>
<internalNodes>
0 -1 84 -3.8960363599471748e-04</internalNodes>
<leafValues>
5.5970847606658936e-01 -4.2648985981941223e-01</leafValues></_>
<_>
<internalNodes>
0 -1 158 -2.5097420439124107e-04</internalNodes>
<leafValues>
5.0482910871505737e-01 -3.6784309148788452e-01</leafValues></_>
<_>
<internalNodes>
0 -1 73 -1.9997386261820793e-03</internalNodes>
<leafValues>
5.9490412473678589e-01 -3.5654053092002869e-01</leafValues></_>
<_>
<internalNodes>
0 -1 12 6.0046585276722908e-03</internalNodes>
<leafValues>
-3.8007000088691711e-01 5.3573167324066162e-01</leafValues></_></weakClassifiers></_>
<!-- stage 9 -->
<_>
<maxWeakCount>9</maxWeakCount>
<stageThreshold>-1.0093878507614136e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 104 1.5215605963021517e-03</internalNodes>
<leafValues>
-4.8727983236312866e-01 5.9595960378646851e-01</leafValues></_>
<_>
<internalNodes>
0 -1 39 3.3136905403807759e-04</internalNodes>
<leafValues>
4.4657191634178162e-01 -6.4084166288375854e-01</leafValues></_>
<_>
<internalNodes>
0 -1 149 6.2655940651893616e-02</internalNodes>
<leafValues>
-3.7088698148727417e-01 7.7597630023956299e-01</leafValues></_>
<_>
<internalNodes>
0 -1 7 1.8256155308336020e-03</internalNodes>
<leafValues>
3.0864655971527100e-01 -8.4123438596725464e-01</leafValues></_>
<_>
<internalNodes>
0 -1 89 2.4676946923136711e-03</internalNodes>
<leafValues>
-3.0564785003662109e-01 8.6883884668350220e-01</leafValues></_>
<_>
<internalNodes>
0 -1 118 -5.0480564823374152e-04</internalNodes>
<leafValues>
8.1099426746368408e-01 -3.0435630679130554e-01</leafValues></_>
<_>
<internalNodes>
0 -1 108 1.7810413613915443e-02</internalNodes>
<leafValues>
-4.1755309700965881e-01 5.5445712804794312e-01</leafValues></_>
<_>
<internalNodes>
0 -1 13 1.7119385302066803e-02</internalNodes>
<leafValues>
-3.2808634638786316e-01 6.9305676221847534e-01</leafValues></_>
<_>
<internalNodes>
0 -1 99 -1.4041164831724018e-04</internalNodes>
<leafValues>
5.0532776117324829e-01 -5.0529742240905762e-01</leafValues></_></weakClassifiers></_>
<!-- stage 10 -->
<_>
<maxWeakCount>10</maxWeakCount>
<stageThreshold>-1.1790993213653564e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 0 -1.0749980807304382e-01</internalNodes>
<leafValues>
-9.2307692766189575e-01 4.5095169544219971e-01</leafValues></_>
<_>
<internalNodes>
0 -1 145 3.6282204091548920e-02</internalNodes>
<leafValues>
-4.3561431765556335e-01 6.4863377809524536e-01</leafValues></_>
<_>
<internalNodes>
0 -1 115 -1.9125394464936107e-04</internalNodes>
<leafValues>
7.9198676347732544e-01 -2.6785668730735779e-01</leafValues></_>
<_>
<internalNodes>
0 -1 161 2.5610751472413540e-03</internalNodes>
<leafValues>
-3.5887122154235840e-01 5.7739567756652832e-01</leafValues></_>
<_>
<internalNodes>
0 -1 129 4.2799808084964752e-02</internalNodes>
<leafValues>
-2.0818111300468445e-01 8.6457198858261108e-01</leafValues></_>
<_>
<internalNodes>
0 -1 58 2.3918901570141315e-03</internalNodes>
<leafValues>
-5.0708097219467163e-01 3.9419853687286377e-01</leafValues></_>
<_>
<internalNodes>
0 -1 114 5.2268966101109982e-04</internalNodes>
<leafValues>
-2.5683295726776123e-01 7.1523237228393555e-01</leafValues></_>
<_>
<internalNodes>
0 -1 74 -1.8801804631948471e-02</internalNodes>
<leafValues>
4.4412004947662354e-01 -4.7601011395454407e-01</leafValues></_>
<_>
<internalNodes>
0 -1 9 -2.0516995573416352e-04</internalNodes>
<leafValues>
-7.3430734872817993e-01 2.7412560582160950e-01</leafValues></_>
<_>
<internalNodes>
0 -1 29 8.1876497715711594e-03</internalNodes>
<leafValues>
-2.9500880837440491e-01 7.6856881380081177e-01</leafValues></_></weakClassifiers></_>
<!-- stage 11 -->
<_>
<maxWeakCount>11</maxWeakCount>
<stageThreshold>-1.2136906385421753e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 25 7.9761212691664696e-03</internalNodes>
<leafValues>
-2.6329115033149719e-01 7.5061726570129395e-01</leafValues></_>
<_>
<internalNodes>
0 -1 41 -7.1366974152624607e-03</internalNodes>
<leafValues>
4.5392939448356628e-01 -5.2305990457534790e-01</leafValues></_>
<_>
<internalNodes>
0 -1 62 1.3655596412718296e-02</internalNodes>
<leafValues>
-3.0884775519371033e-01 7.6920127868652344e-01</leafValues></_>
<_>
<internalNodes>
0 -1 98 -1.6341549344360828e-03</internalNodes>
<leafValues>
6.6684818267822266e-01 -3.6782276630401611e-01</leafValues></_>
<_>
<internalNodes>
0 -1 40 9.8115793662145734e-05</internalNodes>
<leafValues>
-3.8031581044197083e-01 5.7487684488296509e-01</leafValues></_>
<_>
<internalNodes>
0 -1 160 1.8207035958766937e-02</internalNodes>
<leafValues>
-2.5124689936637878e-01 7.3933559656143188e-01</leafValues></_>
<_>
<internalNodes>
0 -1 60 1.7359548946842551e-03</internalNodes>
<leafValues>
-3.9734661579132080e-01 6.2891435623168945e-01</leafValues></_>
<_>
<internalNodes>
0 -1 8 1.4757625758647919e-03</internalNodes>
<leafValues>
2.1867121756076813e-01 -8.0109864473342896e-01</leafValues></_>
<_>
<internalNodes>
0 -1 150 7.5696203857660294e-03</internalNodes>
<leafValues>
-3.5235512256622314e-01 6.1455774307250977e-01</leafValues></_>
<_>
<internalNodes>
0 -1 31 1.1386678088456392e-03</internalNodes>
<leafValues>
-2.6051363348960876e-01 6.1844825744628906e-01</leafValues></_>
<_>
<internalNodes>
0 -1 139 -9.7137264674529433e-04</internalNodes>
<leafValues>
8.1104975938796997e-01 -2.4966773390769958e-01</leafValues></_></weakClassifiers></_>
<!-- stage 12 -->
<_>
<maxWeakCount>8</maxWeakCount>
<stageThreshold>-8.9855605363845825e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 52 -2.1266389638185501e-02</internalNodes>
<leafValues>
7.5962662696838379e-01 -3.3781963586807251e-01</leafValues></_>
<_>
<internalNodes>
0 -1 44 -2.5097068864852190e-03</internalNodes>
<leafValues>
-7.4217349290847778e-01 3.7758478522300720e-01</leafValues></_>
<_>
<internalNodes>
0 -1 164 2.3525862488895655e-03</internalNodes>
<leafValues>
-2.7755615115165710e-01 8.4097403287887573e-01</leafValues></_>
<_>
<internalNodes>
0 -1 56 -1.0660489089787006e-02</internalNodes>
<leafValues>
8.9270591735839844e-01 -2.4468661844730377e-01</leafValues></_>
<_>
<internalNodes>
0 -1 37 2.2806471213698387e-02</internalNodes>
<leafValues>
-3.1090390682220459e-01 6.7939525842666626e-01</leafValues></_>
<_>
<internalNodes>
0 -1 61 -8.9554805308580399e-03</internalNodes>
<leafValues>
8.7543725967407227e-01 -1.7979109287261963e-01</leafValues></_>
<_>
<internalNodes>
0 -1 155 -1.3423584401607513e-02</internalNodes>
<leafValues>
5.6206727027893066e-01 -3.6763671040534973e-01</leafValues></_>
<_>
<internalNodes>
0 -1 75 -3.0376299400813878e-04</internalNodes>
<leafValues>
5.2464032173156738e-01 -3.5799154639244080e-01</leafValues></_></weakClassifiers></_>
<!-- stage 13 -->
<_>
<maxWeakCount>10</maxWeakCount>
<stageThreshold>-1.2344558238983154e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 3 5.7471403852105141e-04</internalNodes>
<leafValues>
4.3063583970069885e-01 -9.0740740299224854e-01</leafValues></_>
<_>
<internalNodes>
0 -1 59 4.2914412915706635e-03</internalNodes>
<leafValues>
-4.2048737406730652e-01 5.5999004840850830e-01</leafValues></_>
<_>
<internalNodes>
0 -1 163 1.2094721198081970e-02</internalNodes>
<leafValues>
-3.1019067764282227e-01 5.8193504810333252e-01</leafValues></_>
<_>
<internalNodes>
0 -1 99 -4.4739717850461602e-04</internalNodes>
<leafValues>
5.3049582242965698e-01 -3.5649526119232178e-01</leafValues></_>
<_>
<internalNodes>
0 -1 137 -7.7575305476784706e-03</internalNodes>
<leafValues>
5.5134570598602295e-01 -3.3935609459877014e-01</leafValues></_>
<_>
<internalNodes>
0 -1 121 -3.9379179477691650e-02</internalNodes>
<leafValues>
8.3912080526351929e-01 -2.0921953022480011e-01</leafValues></_>
<_>
<internalNodes>
0 -1 88 -1.4109613839536905e-03</internalNodes>
<leafValues>
6.9258832931518555e-01 -2.9845607280731201e-01</leafValues></_>
<_>
<internalNodes>
0 -1 90 6.4991146326065063e-02</internalNodes>
<leafValues>
-2.2013919055461884e-01 7.1406865119934082e-01</leafValues></_>
<_>
<internalNodes>
0 -1 32 5.8889649808406830e-03</internalNodes>
<leafValues>
3.0268713831901550e-01 -6.7810201644897461e-01</leafValues></_>
<_>
<internalNodes>
0 -1 119 -3.6501786671578884e-03</internalNodes>
<leafValues>
6.4427900314331055e-01 -2.9659023880958557e-01</leafValues></_></weakClassifiers></_>
<!-- stage 14 -->
<_>
<maxWeakCount>11</maxWeakCount>
<stageThreshold>-1.6017471551895142e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 19 6.3523324206471443e-03</internalNodes>
<leafValues>
-1.3568985462188721e-01 7.1784234046936035e-01</leafValues></_>
<_>
<internalNodes>
0 -1 81 -4.0579847991466522e-03</internalNodes>
<leafValues>
3.7964171171188354e-01 -5.0524675846099854e-01</leafValues></_>
<_>
<internalNodes>
0 -1 100 5.9949874412268400e-04</internalNodes>
<leafValues>
-2.3831744492053986e-01 6.9320493936538696e-01</leafValues></_>
<_>
<internalNodes>
0 -1 14 1.1320451274514198e-02</internalNodes>
<leafValues>
-4.3946433067321777e-01 4.4063070416450500e-01</leafValues></_>
<_>
<internalNodes>
0 -1 72 -6.6953850910067558e-03</internalNodes>
<leafValues>
5.6555390357971191e-01 -2.9760795831680298e-01</leafValues></_>
<_>
<internalNodes>
0 -1 89 -1.6301067080348730e-03</internalNodes>
<leafValues>
7.6978367567062378e-01 -2.0543955266475677e-01</leafValues></_>
<_>
<internalNodes>
0 -1 86 -5.2268290892243385e-04</internalNodes>
<leafValues>
6.2546741962432861e-01 -2.8095382452011108e-01</leafValues></_>
<_>
<internalNodes>
0 -1 93 -1.0911213466897607e-03</internalNodes>
<leafValues>
6.9004940986633301e-01 -2.2914317250251770e-01</leafValues></_>
<_>
<internalNodes>
0 -1 111 -4.1752462275326252e-03</internalNodes>
<leafValues>
4.0621888637542725e-01 -4.1578367352485657e-01</leafValues></_>
<_>
<internalNodes>
0 -1 96 -4.8904903233051300e-03</internalNodes>
<leafValues>
5.0994277000427246e-01 -3.8216280937194824e-01</leafValues></_>
<_>
<internalNodes>
0 -1 78 -1.5894984826445580e-03</internalNodes>
<leafValues>
7.3706626892089844e-01 -2.5429221987724304e-01</leafValues></_></weakClassifiers></_>
<!-- stage 15 -->
<_>
<maxWeakCount>13</maxWeakCount>
<stageThreshold>-1.6141852140426636e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 120 3.0752183869481087e-02</internalNodes>
<leafValues>
-3.7164750695228577e-01 5.5102038383483887e-01</leafValues></_>
<_>
<internalNodes>
0 -1 43 -7.7398195862770081e-02</internalNodes>
<leafValues>
7.6413309574127197e-01 -1.8512850999832153e-01</leafValues></_>
<_>
<internalNodes>
0 -1 23 1.7947454750537872e-01</internalNodes>
<leafValues>
-1.2920907139778137e-01 9.3113201856613159e-01</leafValues></_>
<_>
<internalNodes>
0 -1 66 -4.4148374581709504e-04</internalNodes>
<leafValues>
5.3158652782440186e-01 -2.8859263658523560e-01</leafValues></_>
<_>
<internalNodes>
0 -1 63 5.2896775305271149e-03</internalNodes>
<leafValues>
-3.4687551856040955e-01 4.6362590789794922e-01</leafValues></_>
<_>
<internalNodes>
0 -1 131 8.0148520646616817e-04</internalNodes>
<leafValues>
-2.4686294794082642e-01 7.1972709894180298e-01</leafValues></_>
<_>
<internalNodes>
0 -1 132 -6.4526568166911602e-04</internalNodes>
<leafValues>
7.2305929660797119e-01 -2.8854888677597046e-01</leafValues></_>
<_>
<internalNodes>
0 -1 48 2.2730385884642601e-02</internalNodes>
<leafValues>
2.5252798199653625e-01 -9.6875768899917603e-01</leafValues></_>
<_>
<internalNodes>
0 -1 27 3.8273946847766638e-04</internalNodes>
<leafValues>
-4.5448541641235352e-01 3.3295068144798279e-01</leafValues></_>
<_>
<internalNodes>
0 -1 46 -2.7588799595832825e-02</internalNodes>
<leafValues>
6.8124520778656006e-01 -2.3295682668685913e-01</leafValues></_>
<_>
<internalNodes>
0 -1 53 7.7964398078620434e-03</internalNodes>
<leafValues>
-2.7381548285484314e-01 6.4846020936965942e-01</leafValues></_>
<_>
<internalNodes>
0 -1 112 -4.3723877752199769e-04</internalNodes>
<leafValues>
6.4323586225509644e-01 -2.1882009506225586e-01</leafValues></_>
<_>
<internalNodes>
0 -1 1 -3.8261886220425367e-04</internalNodes>
<leafValues>
-8.8057130575180054e-01 2.0363965630531311e-01</leafValues></_></weakClassifiers></_>
<!-- stage 16 -->
<_>
<maxWeakCount>9</maxWeakCount>
<stageThreshold>-1.1815985441207886e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 57 -9.8001433070749044e-04</internalNodes>
<leafValues>
-6.8211919069290161e-01 4.6687209606170654e-01</leafValues></_>
<_>
<internalNodes>
0 -1 116 2.3405072279274464e-03</internalNodes>
<leafValues>
-5.3582334518432617e-01 3.5968494415283203e-01</leafValues></_>
<_>
<internalNodes>
0 -1 148 -5.0893491134047508e-03</internalNodes>
<leafValues>
5.7512277364730835e-01 -3.7197539210319519e-01</leafValues></_>
<_>
<internalNodes>
0 -1 64 1.0380810126662254e-02</internalNodes>
<leafValues>
-3.7916350364685059e-01 6.6724634170532227e-01</leafValues></_>
<_>
<internalNodes>
0 -1 30 1.6550511645618826e-05</internalNodes>
<leafValues>
-4.9805903434753418e-01 3.8211247324943542e-01</leafValues></_>
<_>
<internalNodes>
0 -1 2 2.6863450184464455e-03</internalNodes>
<leafValues>
2.7388849854469299e-01 -7.0080268383026123e-01</leafValues></_>
<_>
<internalNodes>
0 -1 127 -9.5270592719316483e-03</internalNodes>
<leafValues>
5.0599151849746704e-01 -3.6601147055625916e-01</leafValues></_>
<_>
<internalNodes>
0 -1 106 -4.7977536451071501e-04</internalNodes>
<leafValues>
6.5132683515548706e-01 -2.6886576414108276e-01</leafValues></_>
<_>
<internalNodes>
0 -1 26 3.1825132668018341e-02</internalNodes>
<leafValues>
-3.2007172703742981e-01 6.1813461780548096e-01</leafValues></_></weakClassifiers></_>
<!-- stage 17 -->
<_>
<maxWeakCount>12</maxWeakCount>
<stageThreshold>-9.4175177812576294e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 16 1.3413447886705399e-02</internalNodes>
<leafValues>
-2.2143864631652832e-01 6.2514030933380127e-01</leafValues></_>
<_>
<internalNodes>
0 -1 24 -6.7124560475349426e-02</internalNodes>
<leafValues>
-7.6311528682708740e-01 2.8783240914344788e-01</leafValues></_>
<_>
<internalNodes>
0 -1 159 2.4094688706099987e-03</internalNodes>
<leafValues>
-3.4763059020042419e-01 4.7549289464950562e-01</leafValues></_>
<_>
<internalNodes>
0 -1 153 2.0817190408706665e-02</internalNodes>
<leafValues>
-3.2627016305923462e-01 5.0296902656555176e-01</leafValues></_>
<_>
<internalNodes>
0 -1 54 5.2533462643623352e-02</internalNodes>
<leafValues>
-3.5412850975990295e-01 6.1106353998184204e-01</leafValues></_>
<_>
<internalNodes>
0 -1 100 7.1393151301890612e-04</internalNodes>
<leafValues>
-2.0654715597629547e-01 7.9317712783813477e-01</leafValues></_>
<_>
<internalNodes>
0 -1 133 1.1175924446433783e-03</internalNodes>
<leafValues>
-1.9923585653305054e-01 7.5660812854766846e-01</leafValues></_>
<_>
<internalNodes>
0 -1 79 -3.3205276122316718e-04</internalNodes>
<leafValues>
7.9737639427185059e-01 -1.7094835638999939e-01</leafValues></_>
<_>
<internalNodes>
0 -1 15 -4.6837840229272842e-02</internalNodes>
<leafValues>
-8.0098342895507812e-01 2.3009921610355377e-01</leafValues></_>
<_>
<internalNodes>
0 -1 130 -2.6307101361453533e-03</internalNodes>
<leafValues>
7.7686089277267456e-01 -2.4088244140148163e-01</leafValues></_>
<_>
<internalNodes>
0 -1 135 -2.3639167193323374e-03</internalNodes>
<leafValues>
5.9396690130233765e-01 -2.5076922774314880e-01</leafValues></_>
<_>
<internalNodes>
0 -1 80 1.6444047912955284e-02</internalNodes>
<leafValues>
2.3513989150524139e-01 -7.6919788122177124e-01</leafValues></_></weakClassifiers></_>
<!-- stage 18 -->
<_>
<maxWeakCount>11</maxWeakCount>
<stageThreshold>-7.9091215133666992e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 105 2.2583438549190760e-03</internalNodes>
<leafValues>
-3.4516766667366028e-01 5.2607500553131104e-01</leafValues></_>
<_>
<internalNodes>
0 -1 95 -6.8641304969787598e-03</internalNodes>
<leafValues>
4.5807263255119324e-01 -3.0947107076644897e-01</leafValues></_>
<_>
<internalNodes>
0 -1 47 -2.8661310672760010e-02</internalNodes>
<leafValues>
6.8682104349136353e-01 -2.1287234127521515e-01</leafValues></_>
<_>
<internalNodes>
0 -1 102 -2.1815100626554340e-04</internalNodes>
<leafValues>
5.6910789012908936e-01 -2.7819129824638367e-01</leafValues></_>
<_>
<internalNodes>
0 -1 156 2.7778699994087219e-02</internalNodes>
<leafValues>
-2.1554158627986908e-01 6.7852944135665894e-01</leafValues></_>
<_>
<internalNodes>
0 -1 36 1.8888133764266968e-01</internalNodes>
<leafValues>
-2.2545242309570312e-01 6.4780122041702271e-01</leafValues></_>
<_>
<internalNodes>
0 -1 87 4.8941001296043396e-04</internalNodes>
<leafValues>
-1.8552508950233459e-01 7.5173664093017578e-01</leafValues></_>
<_>
<internalNodes>
0 -1 85 -6.3694064738228917e-04</internalNodes>
<leafValues>
6.8883955478668213e-01 -2.2326049208641052e-01</leafValues></_>
<_>
<internalNodes>
0 -1 147 1.2742819264531136e-02</internalNodes>
<leafValues>
-1.8941468000411987e-01 7.8270876407623291e-01</leafValues></_>
<_>
<internalNodes>
0 -1 125 1.7147921025753021e-02</internalNodes>
<leafValues>
-4.0309405326843262e-01 4.2827814817428589e-01</leafValues></_>
<_>
<internalNodes>
0 -1 33 5.9373714029788971e-03</internalNodes>
<leafValues>
1.8223567306995392e-01 -8.4566026926040649e-01</leafValues></_></weakClassifiers></_>
<!-- stage 19 -->
<_>
<maxWeakCount>13</maxWeakCount>
<stageThreshold>-1.2151402235031128e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 22 2.8508510440587997e-03</internalNodes>
<leafValues>
-1.8851435184478760e-01 6.8961203098297119e-01</leafValues></_>
<_>
<internalNodes>
0 -1 117 -3.7194188917055726e-04</internalNodes>
<leafValues>
6.8834054470062256e-01 -2.2686544060707092e-01</leafValues></_>
<_>
<internalNodes>
0 -1 92 -7.2470661252737045e-03</internalNodes>
<leafValues>
3.1112310290336609e-01 -6.0889953374862671e-01</leafValues></_>
<_>
<internalNodes>
0 -1 115 -3.5364486393518746e-04</internalNodes>
<leafValues>
6.6673213243484497e-01 -2.5371745228767395e-01</leafValues></_>
<_>
<internalNodes>
0 -1 17 2.3483697324991226e-02</internalNodes>
<leafValues>
-3.4340032935142517e-01 4.5103815197944641e-01</leafValues></_>
<_>
<internalNodes>
0 -1 154 7.5656850822269917e-04</internalNodes>
<leafValues>
-3.9627179503440857e-01 5.1694852113723755e-01</leafValues></_>
<_>
<internalNodes>
0 -1 140 5.5908717215061188e-02</internalNodes>
<leafValues>
-2.1723985671997070e-01 6.9305503368377686e-01</leafValues></_>
<_>
<internalNodes>
0 -1 152 3.6975359544157982e-03</internalNodes>
<leafValues>
-3.1726816296577454e-01 4.9445587396621704e-01</leafValues></_>
<_>
<internalNodes>
0 -1 141 -5.5430391803383827e-03</internalNodes>
<leafValues>
5.7705235481262207e-01 -3.7490817904472351e-01</leafValues></_>
<_>
<internalNodes>
0 -1 67 5.3016911260783672e-04</internalNodes>
<leafValues>
-3.6123612523078918e-01 4.7430756688117981e-01</leafValues></_>
<_>
<internalNodes>
0 -1 4 2.9055424965918064e-04</internalNodes>
<leafValues>
1.8285752832889557e-01 -8.8321834802627563e-01</leafValues></_>
<_>
<internalNodes>
0 -1 162 1.2511686654761434e-03</internalNodes>
<leafValues>
-3.7899905443191528e-01 4.4968444108963013e-01</leafValues></_>
<_>
<internalNodes>
0 -1 122 -8.2685047527775168e-04</internalNodes>
<leafValues>
6.4223343133926392e-01 -2.9110759496688843e-01</leafValues></_></weakClassifiers></_></stages>
<features>
<_>
<rects>
<_>
0 2 23 38 -1.</_>
<_>
0 21 23 19 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 3 3 36 -1.</_>
<_>
1 3 1 36 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 8 6 32 -1.</_>
<_>
3 8 3 32 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 9 4 30 -1.</_>
<_>
1 9 2 30 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 14 3 22 -1.</_>
<_>
1 14 1 22 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 8 2 26 -1.</_>
<_>
2 21 2 13 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 16 7 14 -1.</_>
<_>
2 23 7 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 25 14 1 -1.</_>
<_>
2 25 7 1 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
2 37 20 1 -1.</_>
<_>
12 37 10 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 0 3 30 -1.</_>
<_>
5 0 1 30 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
11 6 27 15 -1.</_>
<_>
20 6 9 15 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
11 15 21 14 -1.</_>
<_>
18 15 7 14 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
12 17 24 3 -1.</_>
<_>
20 17 8 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
13 23 36 8 -1.</_>
<_>
13 23 18 4 2.</_>
<_>
31 27 18 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
14 1 27 14 -1.</_>
<_>
23 1 9 14 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
14 9 52 18 -1.</_>
<_>
14 18 52 9 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 2 15 38 -1.</_>
<_>
20 2 5 38 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 3 24 17 -1.</_>
<_>
23 3 8 17 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 10 15 15 -1.</_>
<_>
20 10 5 15 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 12 12 10 -1.</_>
<_>
18 12 6 10 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 14 12 6 -1.</_>
<_>
19 14 4 6 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 15 15 13 -1.</_>
<_>
20 15 5 13 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 0 9 31 -1.</_>
<_>
19 0 3 31 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 0 47 36 -1.</_>
<_>
16 12 47 12 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 6 24 33 -1.</_>
<_>
28 6 12 33 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 11 12 27 -1.</_>
<_>
20 11 4 27 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 21 32 12 -1.</_>
<_>
16 21 16 6 2.</_>
<_>
32 27 16 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
19 11 9 4 -1.</_>
<_>
22 11 3 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
19 13 27 18 -1.</_>
<_>
28 13 9 18 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
19 18 16 8 -1.</_>
<_>
19 22 16 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
20 29 6 1 -1.</_>
<_>
23 29 3 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
21 9 6 6 -1.</_>
<_>
23 11 2 6 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
21 9 16 31 -1.</_>
<_>
29 9 8 31 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
22 11 22 16 -1.</_>
<_>
33 11 11 16 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
22 13 36 18 -1.</_>
<_>
34 19 12 6 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
23 3 9 9 -1.</_>
<_>
26 6 3 9 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
24 17 42 21 -1.</_>
<_>
38 24 14 7 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
24 22 21 10 -1.</_>
<_>
24 27 21 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
25 0 15 11 -1.</_>
<_>
30 5 5 11 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
25 3 36 11 -1.</_>
<_>
34 3 18 11 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
25 25 1 4 -1.</_>
<_>
25 25 1 2 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
26 0 40 15 -1.</_>
<_>
36 0 20 15 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
26 5 24 24 -1.</_>
<_>
26 5 12 12 2.</_>
<_>
38 17 12 12 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
26 18 46 18 -1.</_>
<_>
26 18 23 9 2.</_>
<_>
49 27 23 9 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
26 33 16 5 -1.</_>
<_>
30 33 8 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
27 17 12 3 -1.</_>
<_>
30 17 6 3 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
27 17 12 18 -1.</_>
<_>
27 23 12 6 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
27 18 12 18 -1.</_>
<_>
27 24 12 6 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
28 4 28 13 -1.</_>
<_>
35 4 14 13 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
28 4 22 24 -1.</_>
<_>
28 4 11 12 2.</_>
<_>
39 16 11 12 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
28 5 39 11 -1.</_>
<_>
41 5 13 11 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
28 13 19 18 -1.</_>
<_>
28 19 19 6 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
30 15 19 15 -1.</_>
<_>
30 20 19 5 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
30 18 7 8 -1.</_>
<_>
30 22 7 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
30 19 22 14 -1.</_>
<_>
30 26 22 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
30 22 27 8 -1.</_>
<_>
30 26 27 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
30 23 14 12 -1.</_>
<_>
30 26 14 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
32 3 16 9 -1.</_>
<_>
32 3 8 9 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
33 10 15 13 -1.</_>
<_>
38 10 5 13 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
33 10 8 6 -1.</_>
<_>
33 10 8 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
33 12 9 4 -1.</_>
<_>
33 12 9 2 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
33 24 11 12 -1.</_>
<_>
33 28 11 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
33 24 21 6 -1.</_>
<_>
33 27 21 3 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
34 14 18 4 -1.</_>
<_>
40 14 6 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
34 15 30 3 -1.</_>
<_>
49 15 15 3 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
34 18 3 3 -1.</_>
<_>
35 18 1 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
35 13 14 3 -1.</_>
<_>
35 14 14 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
35 17 6 3 -1.</_>
<_>
37 17 2 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
35 20 11 10 -1.</_>
<_>
35 25 11 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
36 14 6 18 -1.</_>
<_>
36 20 6 6 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
36 14 7 18 -1.</_>
<_>
36 20 7 6 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
36 15 4 3 -1.</_>
<_>
36 15 2 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
36 21 11 9 -1.</_>
<_>
36 24 11 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
36 24 8 6 -1.</_>
<_>
36 26 8 2 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
37 4 21 6 -1.</_>
<_>
44 11 7 6 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
37 13 3 3 -1.</_>
<_>
38 14 1 3 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
37 13 15 2 -1.</_>
<_>
42 18 5 2 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
37 17 3 3 -1.</_>
<_>
38 18 1 1 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
37 18 3 3 -1.</_>
<_>
38 19 1 1 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
37 21 3 1 -1.</_>
<_>
38 21 1 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
38 4 6 28 -1.</_>
<_>
38 18 6 14 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
38 7 12 11 -1.</_>
<_>
44 7 6 11 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
38 10 24 8 -1.</_>
<_>
46 10 8 8 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
38 11 3 6 -1.</_>
<_>
38 13 3 2 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
38 15 2 3 -1.</_>
<_>
38 15 1 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
38 17 3 1 -1.</_>
<_>
39 18 1 1 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
38 17 3 3 -1.</_>
<_>
38 18 3 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
38 18 1 3 -1.</_>
<_>
38 19 1 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
38 18 3 3 -1.</_>
<_>
39 19 1 1 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
38 19 3 3 -1.</_>
<_>
39 20 1 1 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
38 21 18 15 -1.</_>
<_>
44 26 6 5 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
39 7 6 4 -1.</_>
<_>
39 8 6 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
39 9 21 9 -1.</_>
<_>
46 9 7 9 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
39 10 3 18 -1.</_>
<_>
40 10 1 18 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
39 11 23 6 -1.</_>
<_>
39 11 23 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
39 12 8 13 -1.</_>
<_>
39 12 4 13 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
39 13 6 14 -1.</_>
<_>
39 13 3 14 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
39 17 3 4 -1.</_>
<_>
40 17 1 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
39 18 3 3 -1.</_>
<_>
40 19 1 1 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
39 18 3 3 -1.</_>
<_>
40 18 1 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
39 19 1 3 -1.</_>
<_>
39 20 1 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
39 19 3 2 -1.</_>
<_>
39 20 3 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
39 20 3 1 -1.</_>
<_>
40 20 1 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
40 8 9 11 -1.</_>
<_>
43 8 3 11 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
40 12 8 3 -1.</_>
<_>
40 12 4 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
40 13 8 2 -1.</_>
<_>
40 13 4 2 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
40 19 4 2 -1.</_>
<_>
40 19 2 1 2.</_>
<_>
42 20 2 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
40 23 3 6 -1.</_>
<_>
38 25 3 2 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
41 0 19 18 -1.</_>
<_>
35 6 19 6 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
41 13 6 3 -1.</_>
<_>
41 13 3 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
41 14 6 2 -1.</_>
<_>
41 14 3 2 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
41 16 9 3 -1.</_>
<_>
44 19 3 3 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
41 17 3 4 -1.</_>
<_>
42 17 1 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
41 19 3 2 -1.</_>
<_>
42 19 1 2 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
41 19 3 5 -1.</_>
<_>
42 19 1 5 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
41 20 3 1 -1.</_>
<_>
42 20 1 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
42 13 6 3 -1.</_>
<_>
42 13 3 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
42 19 3 3 -1.</_>
<_>
43 19 1 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
42 19 3 6 -1.</_>
<_>
43 19 1 6 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
42 23 10 12 -1.</_>
<_>
42 26 10 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
43 8 15 26 -1.</_>
<_>
43 21 15 13 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
43 10 16 8 -1.</_>
<_>
47 14 8 8 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
43 12 3 13 -1.</_>
<_>
44 12 1 13 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
44 6 30 19 -1.</_>
<_>
54 6 10 19 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
45 1 13 9 -1.</_>
<_>
42 4 13 3 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
45 3 15 18 -1.</_>
<_>
39 9 15 6 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
45 9 12 10 -1.</_>
<_>
49 13 4 10 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
46 2 12 8 -1.</_>
<_>
44 4 12 4 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
46 5 10 30 -1.</_>
<_>
46 20 10 15 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
46 9 18 7 -1.</_>
<_>
52 15 6 7 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
46 12 16 3 -1.</_>
<_>
45 13 16 1 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
46 14 3 9 -1.</_>
<_>
47 14 1 9 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
46 18 3 6 -1.</_>
<_>
47 18 1 6 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
47 0 3 23 -1.</_>
<_>
48 0 1 23 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
47 1 24 36 -1.</_>
<_>
55 13 8 12 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
47 8 13 4 -1.</_>
<_>
46 9 13 2 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
47 16 7 21 -1.</_>
<_>
47 23 7 7 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
47 19 16 8 -1.</_>
<_>
55 19 8 8 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
48 3 12 9 -1.</_>
<_>
45 6 12 3 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
48 12 3 3 -1.</_>
<_>
49 13 1 1 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
48 14 32 24 -1.</_>
<_>
48 22 32 8 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
48 19 14 7 -1.</_>
<_>
55 19 7 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
48 21 8 5 -1.</_>
<_>
52 21 4 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
49 3 10 9 -1.</_>
<_>
46 6 10 3 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
49 4 6 8 -1.</_>
<_>
47 6 6 4 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
49 13 12 27 -1.</_>
<_>
53 22 4 9 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
50 1 15 18 -1.</_>
<_>
55 6 5 18 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
50 18 3 18 -1.</_>
<_>
50 27 3 9 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
51 8 5 10 -1.</_>
<_>
51 8 5 5 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
51 10 15 27 -1.</_>
<_>
56 19 5 9 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
52 9 9 26 -1.</_>
<_>
55 9 3 26 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
52 10 20 9 -1.</_>
<_>
57 15 10 9 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
52 11 15 12 -1.</_>
<_>
52 11 15 6 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
54 3 13 24 -1.</_>
<_>
46 11 13 8 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
55 16 8 4 -1.</_>
<_>
55 16 8 2 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
56 1 9 18 -1.</_>
<_>
59 4 3 18 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
56 1 9 36 -1.</_>
<_>
56 10 9 18 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
56 16 6 6 -1.</_>
<_>
56 16 6 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
56 19 6 7 -1.</_>
<_>
59 19 3 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
57 8 12 20 -1.</_>
<_>
60 8 6 20 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
57 11 5 20 -1.</_>
<_>
52 16 5 10 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
59 3 9 28 -1.</_>
<_>
62 3 3 28 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
59 7 9 20 -1.</_>
<_>
62 7 3 20 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
60 9 12 11 -1.</_>
<_>
63 12 6 11 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
62 11 6 16 -1.</_>
<_>
64 11 2 16 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
62 12 15 17 -1.</_>
<_>
67 12 5 17 3.</_></rects>
<tilted>0</tilted></_></features></cascade>
</opencv_storage>