mirror of
https://github.com/AntoineHX/BU_Stoch_pool.git
synced 2025-05-03 17:20:45 +02:00
40 lines
1.5 KiB
Python
40 lines
1.5 KiB
Python
import numpy as np
|
|
import json, math, time, os
|
|
|
|
if __name__ == "__main__":
|
|
#Res print
|
|
|
|
nb_run=3
|
|
accs = []
|
|
taccs = []
|
|
# aug_accs = []
|
|
# f1_max = []
|
|
# f1_min = []
|
|
# times = []
|
|
# mem = []
|
|
|
|
files = ["res/benchmark_NoCeil/log/MyLeNetMatStochBUNoceil-50epochs__k4_%s.json"%(str(run)) for run in range(1, nb_run+1)]
|
|
|
|
for idx, file in enumerate(files):
|
|
#legend+=str(idx)+'-'+file+'\n'
|
|
with open(file) as json_file:
|
|
data = json.load(json_file)
|
|
# accs.append(data['Accuracy'])
|
|
accs.append(max([x["test_acc"] for x in data]))
|
|
taccs.append(max([x["train_acc"] for x in data]))
|
|
# aug_accs.append(data['Aug_Accuracy'][1])
|
|
#times.append(data['Time'][0])
|
|
#mem.append(data['Memory'][1])
|
|
|
|
# acc_idx = [x['acc'] for x in data['Log']].index(data['Accuracy'])
|
|
# f1_max.append(max(data['Log'][acc_idx]['f1'])*100)
|
|
# f1_min.append(min(data['Log'][acc_idx]['f1'])*100)
|
|
# print(idx, accs[-1])
|
|
|
|
print(files[0])
|
|
print("Acc : %.2f ~ %.2f"%(np.mean(accs), np.std(accs)))
|
|
print("Acc train : %.2f ~ %.2f"%(np.mean(taccs), np.std(taccs)))
|
|
# print("Acc : %.2f ~ %.2f / Aug_Acc %d: %.2f ~ %.2f"%(np.mean(accs), np.std(accs), data['Aug_Accuracy'][0], np.mean(aug_accs), np.std(aug_accs)))
|
|
# print("F1 max : %.2f ~ %.2f / F1 min : %.2f ~ %.2f"%(np.mean(f1_max), np.std(f1_max), np.mean(f1_min), np.std(f1_min)))
|
|
#print("Time (h): %.2f ~ %.2f"%(np.mean(times)/3600, np.std(times)/3600))
|
|
#print("Mem (MB): %d ~ %d"%(np.mean(mem), np.std(mem)))
|