BU_Stoch_pool/models/stoch.py
2020-06-30 11:56:51 -04:00

447 lines
23 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import opt_einsum as oe
class SConv2dStride(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,ceil_mode=True,bias=False):
super(SConv2dStride, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size , stride=stride, padding=padding,dilation=dilation,bias=bias)
self.stride = stride
self.ceil_mode = ceil_mode
def forward(self, x,stoch = True):
stoch=True #for some reason average does not work...
if stoch:
device= x.device
selh = torch.randint(self.conv.stride[0],(1,), device=device)[0]
selw = torch.randint(self.conv.stride[1],(1,), device=device)[0]
out = self.conv(x[:,:,selh:,selw:])
else:
self.conv.stride = (1,1)
out = self.conv(x)
out = F.avg_pool2d(out,self.stride,ceil_mode=self.ceil_mode)
self.conv.stride = (self.stride,self.stride)
return out
class SConv2dAvg(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,ceil_mode=True, bias = True):
super(SConv2dAvg, self).__init__()
conv = nn.Conv2d(in_channels, out_channels, kernel_size)
self.deconv = nn.ConvTranspose2d(1, 1, kernel_size, stride=1, padding=padding, output_padding=0, groups=1, bias=False, dilation=1, padding_mode='zeros')
nn.init.constant_(self.deconv.weight, 1)
self.pooldeconv = nn.ConvTranspose2d(1, 1, kernel_size=stride,padding=0,stride=stride, output_padding=0, groups=1, bias=False, dilation=1, padding_mode='zeros')
nn.init.constant_(self.pooldeconv.weight, 1)
self.weight = nn.Parameter(conv.weight)
if bias:
self.bias = nn.Parameter(conv.bias)
else:
self.bias = None
self.stride = stride
self.dilation = dilation
self.padding = padding
self.kernel_size = kernel_size
self.ceil_mode = ceil_mode
def forward(self, input, index=-torch.ones(1), mask=-torch.ones(1,1),stoch=True,stride=-1): #ceil_mode = True not right
device=input.device
if stride==-1:
stride = self.stride #if stride not defined use self.stride
if stoch==False:
stride=1 #test with real average pooling
batch_size, in_channels, in_h, in_w = input.shape
out_channels, in_channels, kh, kw = self.weight.shape
afterconv_h,afterconv_w,out_h,out_w = self.get_size(in_h,in_w,stride)
unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=self.dilation, padding=self.padding, stride=1)
inp_unf = unfold(input) #transform into a matrix (batch_size, in_channels*kh*kw,afterconv_h,afterconv_w)
if stride!=1:
if len(index.shape)==1: #or stride!=1:
index,mask = self.sample(in_h,in_w,batch_size,device,mask)
if mask[0,0]==-1:# in case of not given mask use only sampled selection
#inp_unf = inp_unf[:,:,rng_h,rng_w].view(batch_size,in_channels*kh*kw,-1)
index = index.repeat(batch_size,in_channels*kh*kw,1,1)
inp_unf = torch.gather(inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h*afterconv_w),2,index.view(batch_size,in_channels*kh*kw,out_h*out_w)).view(batch_size,in_channels*kh*kw,out_h*out_w)
else:#in case of a valid mask use selection only on the mask locations
#inp_unf = inp_unf[index[:,:,mask>0]]
#mindex = index[mask>0]
mindex = torch.masked_select(index, mask>0)
index = mindex.repeat(batch_size,in_channels*kh*kw,1)
inp_unf = torch.gather(inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h*afterconv_w),2,index.view(batch_size,in_channels*kh*kw,index.shape[2])).view(batch_size,in_channels*kh*kw,index.shape[2])
#Matrix mul
if self.bias is None:
#flt = self.weight.view(self.weight.size(0), -1).t()
#out_unf = inp_unf.transpose(2,1).matmul(flt).transpose(1, 2)
out_unf = oe.contract('bji,kj->bki',inp_unf,self.weight.view(self.weight.size(0), -1),backend='torch')
#print(((out_unf-out_unf1)**2).mean())
else:
#out_unf = oe.contract('bji,kj,k->bki',inp_unf,self.weight.view(self.weight.size(0), -1),self.bias,backend='torch')#+self.bias.view(1,-1,1)#wrong
out_unf = oe.contract('bji,kj->bki',inp_unf,self.weight.view(self.weight.size(0), -1),backend='torch')+self.bias.view(1,-1,1)#sligthly slower but correct
#out_unf1 = (inp_unf.transpose(1, 2).matmul(self.weight.view(self.weight.size(0), -1).t()) + self.bias).transpose(1, 2)
#print(((out_unf-out_unf1)**2).mean())
#self.flt = self.weight.view(self.weight.size(0), -1).t()
#out_unf = (inp_unf.transpose(1, 2).matmul(self.flt) + self.bias).transpose(1, 2)
if stride==1 or mask[0,0]==-1:# in case of no mask and stride==1
out = out_unf.view(batch_size,out_channels,out_h,out_w) #Fold
#if stoch==False: #this is done outside for more clarity
# out = F.avg_pool2d(out,self.stride,ceil_mode=False)
#print(self.stride)
else:#in case of mask
out = torch.zeros(batch_size, out_channels,out_h,out_w,device=device)
#out = torch.gather(out.view(batch_size,in_channels*kh*kw,afterconv_h*afterconv_w),2,index.view(batch_size,in_channels*kh*kw,index.shape[2])).view(batch_size,in_channels*kh*kw,index.shape[2])
out[:,:,mask>0] = out_unf
#out.masked_scatter_(mask>0, out_unf)
return out
def forward_slow(self, input, selh=-torch.ones(1,1), selw=-torch.ones(1,1), mask=-torch.ones(1,1),stoch=True,stride=-1):
device=input.device
if stride==-1:
stride = self.stride #if stride not defined use self.stride
if stoch==False:
stride=1 #test with real average pooling
batch_size, in_channels, in_h, in_w = input.shape
out_channels, in_channels, kh, kw = self.weight.shape
afterconv_h = in_h+2*self.padding-(kh-1) #size after conv
afterconv_w = in_w+2*self.padding-(kw-1)
if self.ceil_mode: #ceil_mode = talse default mode for strided conv
out_h = math.ceil(afterconv_h/stride)
out_w = math.ceil(afterconv_w/stride)
else: #ceil_mode = false default mode for pooling
out_h = math.floor(afterconv_h/stride)
out_w = math.floor(afterconv_w/stride)
unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=self.dilation, padding=self.padding, stride=1)
inp_unf = unfold(input) #transform into a matrix (batch_size, in_channels*kh*kw,afterconv_h,afterconv_w)
if stride!=1: # if stride==1 there is no pooling
inp_unf = inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h,afterconv_w)
if selh[0,0]==-1: # if not given sampled selection
#selction of where to sample for each pooling location
selh = torch.randint(stride,(out_h,out_w), device=device)
selw = torch.randint(stride,(out_h,out_w), device=device)
resth = (out_h*stride)-afterconv_h
restw = (out_w*stride)-afterconv_w
if resth!=0 and self.ceil_mode: #in case of ceil_mode need to select only the good locations for the last regions
selh[-1,:]=selh[-1,:]%(stride-resth);selh[:,-1]=selh[:,-1]%(stride-restw)
selw[-1,:]=selw[-1,:]%(stride-resth);selw[:,-1]=selw[:,-1]%(stride-restw)
#the postion should be global by adding range...
rng_h = selh + torch.arange(0,out_h*stride,stride,device=device).view(-1,1)
rng_w = selw + torch.arange(0,out_w*stride,stride,device=device)
if mask[0,0]==-1:# in case of not given mask use only sampled selection
inp_unf = inp_unf[:,:,rng_h,rng_w].view(batch_size,in_channels*kh*kw,-1)
else:#in case of a valid mask use selection only on the mask locations
inp_unf = inp_unf[:,:,rng_h[mask>0],rng_w[mask>0]]
#Matrix mul
if self.bias is None:
out_unf = inp_unf.transpose(1, 2).matmul(self.weight.view(self.weight.size(0), -1).t()).transpose(1, 2)
#out_unf = oe.contract('bji,kj->bki',inp_unf,self.weight.view(self.weight.size(0), -1),backend='torch')
else:
#out_unf = oe.contract('bji,kj->bki',inp_unf,self.weight.view(self.weight.size(0), -1),backend='torch')+self.bias.view(1,-1,1)
out_unf = (inp_unf.transpose(1, 2).matmul(self.weight.view(self.weight.size(0), -1).t()) + self.bias).transpose(1, 2)
if stride==1 or mask[0,0]==-1:# in case of no mask and stride==1
out = out_unf.view(batch_size,out_channels,out_h,out_w) #Fold
#if stoch==False: #this is done outside for more clarity
# out = F.avg_pool2d(out,self.stride,ceil_mode=self.ceil_mode)
else:#in case of mask
out = torch.zeros(batch_size, out_channels,out_h,out_w,device=device)
out[:,:,mask>0] = out_unf
return out
def forward_test(self, input, selh=-torch.ones(1,1), selw=-torch.ones(1,1), mask=-torch.ones(1,1),stoch=True,stride=-1):#ugly but faster
device=input.device
if stride==-1:
stride = self.stride #if stride not defined use self.stride
if stoch==False:
stride=1 #test with real average pooling
batch_size, in_channels, in_h, in_w = input.shape
out_channels, in_channels, kh, kw = self.weight.shape
#afterconv_h,afterconv_w,out_h,out_w = self.get_size(in_h,in_w)
#if selh[0,0]==-1:
# index,mask = self.sample(in_h,in_w,batch_size,device,mask)
if 1:
afterconv_h = in_h+2*self.padding-(kh-1) #size after conv
afterconv_w = in_w+2*self.padding-(kw-1)
if self.ceil_mode: #ceil_mode = talse default mode for strided conv
out_h = math.ceil(afterconv_h/stride)
out_w = math.ceil(afterconv_w/stride)
else: #ceil_mode = false default mode for pooling
out_h = math.floor(afterconv_h/stride)
out_w = math.floor(afterconv_w/stride)
unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=self.dilation, padding=self.padding, stride=1)
inp_unf = unfold(input) #transform into a matrix (batch_size, in_channels*kh*kw,afterconv_h,afterconv_w)
if 1:
if stride!=1: # if stride==1 there is no pooling
inp_unf = inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h,afterconv_w)
if selh[0,0]==-1: # if not given sampled selection
#selction of where to sample for each pooling location
sel = torch.randint(stride*stride,(out_h,out_w), device=device)
if self.ceil_mode: #in case of ceil_mode need to select only the good locations for the last regions
resth = (out_h*stride)-afterconv_h
restw = (out_w*stride)-afterconv_w
if resth!=0:
sel[-1] = (sel[-1]//stride)%(stride-resth)*stride+(sel[-1]%stride)
sel[:,-1] = (sel[:,-1]%stride)%(stride-restw)+sel[:,-1]//stride*stride
#print(stride-resth,sel[-1])
#print(stride-restw,sel[:,-1])
#rng = torch.arange(0,afterconv_h*afterconv_w,stride*stride,device=device).view(out_h,out_w)
rng = torch.arange(0,out_h*stride*out_w*stride,stride*stride,device=device).view(out_h,out_w)
index = sel+rng
index = index.repeat(batch_size,in_channels*kh*kw,1,1)
if mask[0,0]==-1:# in case of not given mask use only sampled selection
#inp_unf = inp_unf[:,:,rng_h,rng_w].view(batch_size,in_channels*kh*kw,-1)
inp_unf = torch.gather(inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h*afterconv_w),2,index.view(batch_size,in_channels*kh*kw,out_h*out_w)).view(batch_size,in_channels*kh*kw,out_h*out_w)
else:#in case of a valid mask use selection only on the mask locations
inp_unf = inp_unf[:,:,rng_h[mask>0],rng_w[mask>0]]
#Matrix mul
if self.bias is None:
#flt = self.weight.view(self.weight.size(0), -1).t()
#out_unf = inp_unf.transpose(2,1).matmul(flt).transpose(1, 2)
out_unf = oe.contract('bji,kj->bki',inp_unf,self.weight.view(self.weight.size(0), -1),backend='torch')
#print(((out_unf-out_unf1)**2).mean())
else:
#out_unf = oe.contract('bji,kj,b->bki',inp_unf,self.weight.view(self.weight.size(0), -1),self.bias,backend='torch')#+self.bias.view(1,-1,1)#still slow
out_unf = oe.contract('bji,kj->bki',inp_unf,self.weight.view(self.weight.size(0), -1),backend='torch')+self.bias.view(1,-1,1)#still slow
#self.flt = self.weight.view(self.weight.size(0), -1).t()
#out_unf = (inp_unf.transpose(1, 2).matmul(self.flt) + self.bias).transpose(1, 2)
if stride==1 or mask[0,0]==-1:# in case of no mask and stride==1
out = out_unf.view(batch_size,out_channels,out_h,out_w) #Fold
if stoch==False: #this is done outside for more clarity
out = F.avg_pool2d(out,self.stride,ceil_mode=True)
else:#in case of mask
out = torch.zeros(batch_size, out_channels,out_h,out_w,device=device)
out[:,:,mask>0] = out_unf
return out
def forward_slowwithbatch(self, input, selh=-torch.ones(1,1), selw=-torch.ones(1,1), mask=-torch.ones(1,1),stoch=True,stride=-1):
device=input.device
if stride==-1:
stride = self.stride
#stoch=True
if stoch==False:
stride=1 #test with real average pooling
batch_size, in_channels, in_h, in_w = input.shape
out_channels, in_channels, kh, kw = self.weight.shape
afterconv_h = in_h+2*padding-(kh-1) #size after conv
afterconv_w = in_w+2*padding-(kw-1)
if self.ceil_mode:
out_h = math.ceil(afterconv_h/stride)
out_w = math.ceil(afterconv_w/stride)
else:
out_h = math.floor(afterconv_h/stride)
out_w = math.floor(afterconv_w/stride)
unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=self.dilation, padding=self.padding, stride=1)
inp_unf = unfold(input)
if stride!=1:
inp_unf = inp_unf.view(batch_size,in_channels,kh*kw,afterconv_h,afterconv_w)
if selh[0,0]==-1:
resth = (out_h*stride)-afterconv_h
restw = (out_w*stride)-afterconv_w
selh = torch.randint(stride,(in_channels,out_h,out_w), device=device)
selw = torch.randint(stride,(in_channels,out_h,out_w), device=device)
# print(selh.shape)
if resth!=0:
# Cas : (stride-resth)=0 ?
selh[-1,:]=selh[-1,:]%(stride-resth);selh[:,-1]=selh[:,-1]%(stride-restw)
selw[-1,:]=selw[-1,:]%(stride-resth);selw[:,-1]=selw[:,-1]%(stride-restw)
rng_h = selh + torch.arange(0,out_h*stride,stride,device=device).view(1,-1,1)
rng_w = selw + torch.arange(0,out_w*stride,stride,device=device).view(1,1,-1)
selc = torch.arange(0,in_channels,device=input.device).view(in_channels,1,1).repeat(1,out_h,out_w)
if mask[0,0]==-1:
inp_unf = inp_unf.transpose(1,2)[:,:,selc,rng_h,rng_w].transpose(2,1).reshape(batch_size,in_channels*kh*kw,-1)
else:
inp_unf = inp_unf[:,:,rng_h[mask>0],rng_w[mask>0]]
#Matrix mul
if self.bias is None:
out_unf = inp_unf.transpose(1, 2).matmul(self.weight.view(self.weight.size(0), -1).t()).transpose(1, 2)
else:
out_unf = (inp_unf.transpose(1, 2).matmul(self.weight.view(self.weight.size(0), -1).t()) + self.bias).transpose(1, 2)
if stride==1 or mask[0,0]==-1:
out = out_unf.view(batch_size,out_channels,out_h,out_w) #Fold
# if stoch==False:
# out = F.avg_pool2d(out,self.stride,ceil_mode=True)
else:
out = torch.zeros(batch_size, out_channels,out_h,out_w,device=device)
out[:,:,mask>0] = out_unf
return out
def comp(self,h,w,mask=-torch.ones(1,1)):
out_h = (h-(self.kernel_size))/self.stride
out_w = (w-(self.kernel_size))/self.stride
if self.ceil_mode:
out_h = math.ceil(out_h)
out_w = math.ceil(out_w)
else:
out_h = math.floor(out_h)
out_w = math.florr(out_w)
if mask[0,0]==-1:
comp = self.weight.numel()*out_h*out_w
else:
comp = self.weight.numel()*(mask>0).sum()
return comp
def sample_slow(self,h,w,mask):
'''
h, w : forward input shape
mask : mask of output used in computation
'''
stride = self.stride
out_channels, in_channels, kh, kw = self.weight.shape
device=mask.device
#Shape after simple forward conv ?
afterconv_h = h+2*padding-(kh-1)
afterconv_w = w+2*padding-(kw-1)
# print(afterconv_h)
# print(afterconv_h/stride)
#Shape after forward ? (== mask.shape ?) #Padding, Dilatation pas pris en compte ?
if self.ceil_mode:
out_h = math.ceil(afterconv_h/stride)
out_w = math.ceil(afterconv_w/stride)
else:
out_h = math.floor(afterconv_h/stride)
out_w = math.floor(afterconv_w/stride)
#selh = torch.randint(stride,(out_h,out_w), device=device)
#selw = torch.randint(stride,(out_h,out_w), device=device)
resth = (out_h*stride)-afterconv_h #reste de ceil/floor, 0 ou 1
restw = (out_w*stride)-afterconv_w
# print('rest', resth, restw)
if resth!=0:
selh[-1,:]=selh[-1,:]%(stride-resth);selh[:,-1]=selh[:,-1]%(stride-restw)
selw[-1,:]=selw[-1,:]%(stride-resth);selw[:,-1]=selw[:,-1]%(stride-restw)
maskh = (out_h)*stride
maskw = (out_w)*stride
# print('mask', maskh, maskw)
rng_h = selh + torch.arange(0,out_h*stride,stride,device=device).view(-1,1)
rng_w = selw + torch.arange(0,out_w*stride,stride,device=device)
# rng_w = selw + torch.arange(0,out_w*self.stride,self.stride,device=device).view(-1,1)
nmask = torch.zeros((maskh,maskw),device=device)
nmask[rng_h,rng_w] = 1
#rmask = mask * nmask
dmask = self.pooldeconv(mask.float().view(1,1,mask.shape[0],mask.shape[1]))
rmask = nmask * dmask
#rmask = rmask[:,:,:out_h,:out_w]
# print('rmask', rmask.shape)
fmask = self.deconv(rmask)
# print('fmask', fmask.shape)
fmask = fmask[0,0]
return selh,selw,fmask.long()
def sample(self,in_h,in_w,batch_size,device,mask=-torch.ones(1,1)):
'''
h, w : forward input shape
mask : mask of output used in computation
'''
stride = self.stride
out_channels, in_channels, kh, kw = self.weight.shape
#device=mask.device
#Shape after simple forward conv ?
afterconv_h = in_h+2*self.padding-(kh-1) #size after conv
afterconv_w = in_w+2*self.padding-(kw-1)
#Shape after forward ? (== mask.shape ?) #Padding, Dilatation pas pris en compte ?
if self.ceil_mode:
out_h = math.ceil(afterconv_h/stride)
out_w = math.ceil(afterconv_w/stride)
else:
out_h = math.floor(afterconv_h/stride)
out_w = math.floor(afterconv_w/stride)
sel = torch.randint(stride*stride,(out_h,out_w), device=device)
if self.ceil_mode: #in case of ceil_mode need to select only the good locations for the last regions
resth = (out_h*stride)-afterconv_h
restw = (out_w*stride)-afterconv_w
if resth!=0:
print("stride",stride,"str-rest",stride-resth,stride-restw)
print('before',sel[-1],sel[:,-1])
sel[-1] = (sel[-1]//stride)%(stride-resth)*stride+(sel[-1]%stride)
sel[:,-1] = (sel[:,-1]%stride)%(stride-restw)+sel[:,-1]//stride*stride
print('after',sel[-1],sel[:,-1])
input()
rng = torch.arange(0,out_h*stride*out_w*stride,stride*stride,device=device).view(out_h,out_w)
index = sel+rng
#index = index.repeat(batch_size,in_channels*kh*kw,1,1)
#inp_unf = torch.gather(inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h*afterconv_w),2,index.view(batch_size,in_channels*kh*kw,out_h*out_w)).view(batch_size,in_channels*kh*kw,out_h*out_w)
if mask[0,0]!=-1:
maskh = (out_h)*stride
maskw = (out_w)*stride
nmask = torch.zeros((maskh,maskw),device=device).view(-1)
#inp_unf = torch.gather(inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h*afterconv_w),2,index.view(batch_size,in_channels*kh*kw,out_h*out_w)).view(batch_size,in_channels*kh*kw,out_h*out_w)
nmask[index] = 1
#rmask = mask * nmask
dmask = self.pooldeconv(mask.float().view(1,1,mask.shape[0],mask.shape[1]))
rmask = nmask.view(1,1,maskh,maskw) * dmask
#rmask = rmask[:,:,:out_h,:out_w]
# print('rmask', rmask.shape)
fmask = self.deconv(rmask)
# print('fmask', fmask.shape)
mask = fmask[0,0].long()
return index,mask#.long()
def get_mask(self,in_h,in_w,batch_size,device,mask=-torch.ones(1,1)):
maskh = (out_h)*stride
maskw = (out_w)*stride
nmask = torch.zeros((maskh,maskw),device=device).view(-1)
#inp_unf = torch.gather(inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h*afterconv_w),2,index.view(batch_size,in_channels*kh*kw,out_h*out_w)).view(batch_size,in_channels*kh*kw,out_h*out_w)
nmask[index[0,0]] = 1
#rmask = mask * nmask
dmask = self.pooldeconv(mask.float().view(1,1,mask.shape[0],mask.shape[1]))
rmask = nmask.view(1,1,maskh,maskw) * dmask
#rmask = rmask[:,:,:out_h,:out_w]
# print('rmask', rmask.shape)
fmask = self.deconv(rmask)
# print('fmask', fmask.shape)
mask = fmask[0,0].long()
return mask
def get_size(self,in_h,in_w,stride=-1):
if stride==-1:
stride = self.stride
out_channels, in_channels, kh, kw = self.weight.shape
afterconv_h = in_h+2*self.padding-(kh-1) #size after conv
afterconv_w = in_w+2*self.padding-(kw-1)
if self.ceil_mode: #ceil_mode = talse default mode for strided conv
out_h = math.ceil(afterconv_h/stride)
out_w = math.ceil(afterconv_w/stride)
else: #ceil_mode = false default mode for pooling
out_h = math.floor(afterconv_h/stride)
out_w = math.floor(afterconv_w/stride)
#newh=math.floor(((h + 2*self.padding - self.dilation*(self.kernel_size-1) - 1)/self.stride) + 1)
#neww=math.floor(((w + 2*self.padding - self.dilation*(self.kernel_size-1) - 1)/self.stride) + 1)
return afterconv_h,afterconv_w,out_h,out_w