mirror of
https://github.com/AntoineHX/BU_Stoch_pool.git
synced 2025-05-03 17:20:45 +02:00
155 lines
4.4 KiB
Python
155 lines
4.4 KiB
Python
'''RegNet in PyTorch.
|
|
|
|
Paper: "Designing Network Design Spaces".
|
|
|
|
Reference: https://github.com/keras-team/keras-applications/blob/master/keras_applications/efficientnet.py
|
|
'''
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class SE(nn.Module):
|
|
'''Squeeze-and-Excitation block.'''
|
|
|
|
def __init__(self, in_planes, se_planes):
|
|
super(SE, self).__init__()
|
|
self.se1 = nn.Conv2d(in_planes, se_planes, kernel_size=1, bias=True)
|
|
self.se2 = nn.Conv2d(se_planes, in_planes, kernel_size=1, bias=True)
|
|
|
|
def forward(self, x):
|
|
out = F.adaptive_avg_pool2d(x, (1, 1))
|
|
out = F.relu(self.se1(out))
|
|
out = self.se2(out).sigmoid()
|
|
out = x * out
|
|
return out
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, w_in, w_out, stride, group_width, bottleneck_ratio, se_ratio):
|
|
super(Block, self).__init__()
|
|
# 1x1
|
|
w_b = int(round(w_out * bottleneck_ratio))
|
|
self.conv1 = nn.Conv2d(w_in, w_b, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(w_b)
|
|
# 3x3
|
|
num_groups = w_b // group_width
|
|
self.conv2 = nn.Conv2d(w_b, w_b, kernel_size=3,
|
|
stride=stride, padding=1, groups=num_groups, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(w_b)
|
|
# se
|
|
self.with_se = se_ratio > 0
|
|
if self.with_se:
|
|
w_se = int(round(w_in * se_ratio))
|
|
self.se = SE(w_b, w_se)
|
|
# 1x1
|
|
self.conv3 = nn.Conv2d(w_b, w_out, kernel_size=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(w_out)
|
|
|
|
self.shortcut = nn.Sequential()
|
|
if stride != 1 or w_in != w_out:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(w_in, w_out,
|
|
kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(w_out)
|
|
)
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = F.relu(self.bn2(self.conv2(out)))
|
|
if self.with_se:
|
|
out = self.se(out)
|
|
out = self.bn3(self.conv3(out))
|
|
out += self.shortcut(x)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
|
|
class RegNet(nn.Module):
|
|
def __init__(self, cfg, num_classes=10):
|
|
super(RegNet, self).__init__()
|
|
self.cfg = cfg
|
|
self.in_planes = 64
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
|
|
stride=1, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.layer1 = self._make_layer(0)
|
|
self.layer2 = self._make_layer(1)
|
|
self.layer3 = self._make_layer(2)
|
|
self.layer4 = self._make_layer(3)
|
|
self.linear = nn.Linear(self.cfg['widths'][-1], num_classes)
|
|
|
|
def _make_layer(self, idx):
|
|
depth = self.cfg['depths'][idx]
|
|
width = self.cfg['widths'][idx]
|
|
stride = self.cfg['strides'][idx]
|
|
group_width = self.cfg['group_width']
|
|
bottleneck_ratio = self.cfg['bottleneck_ratio']
|
|
se_ratio = self.cfg['se_ratio']
|
|
|
|
layers = []
|
|
for i in range(depth):
|
|
s = stride if i == 0 else 1
|
|
layers.append(Block(self.in_planes, width,
|
|
s, group_width, bottleneck_ratio, se_ratio))
|
|
self.in_planes = width
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = self.layer1(out)
|
|
out = self.layer2(out)
|
|
out = self.layer3(out)
|
|
out = self.layer4(out)
|
|
out = F.adaptive_avg_pool2d(out, (1, 1))
|
|
out = out.view(out.size(0), -1)
|
|
out = self.linear(out)
|
|
return out
|
|
|
|
|
|
def RegNetX_200MF():
|
|
cfg = {
|
|
'depths': [1, 1, 4, 7],
|
|
'widths': [24, 56, 152, 368],
|
|
'strides': [1, 1, 2, 2],
|
|
'group_width': 8,
|
|
'bottleneck_ratio': 1,
|
|
'se_ratio': 0,
|
|
}
|
|
return RegNet(cfg)
|
|
|
|
|
|
def RegNetX_400MF():
|
|
cfg = {
|
|
'depths': [1, 2, 7, 12],
|
|
'widths': [32, 64, 160, 384],
|
|
'strides': [1, 1, 2, 2],
|
|
'group_width': 16,
|
|
'bottleneck_ratio': 1,
|
|
'se_ratio': 0,
|
|
}
|
|
return RegNet(cfg)
|
|
|
|
|
|
def RegNetY_400MF():
|
|
cfg = {
|
|
'depths': [1, 2, 7, 12],
|
|
'widths': [32, 64, 160, 384],
|
|
'strides': [1, 1, 2, 2],
|
|
'group_width': 16,
|
|
'bottleneck_ratio': 1,
|
|
'se_ratio': 0.25,
|
|
}
|
|
return RegNet(cfg)
|
|
|
|
|
|
def test():
|
|
net = RegNetX_200MF()
|
|
print(net)
|
|
x = torch.randn(2, 3, 32, 32)
|
|
y = net(x)
|
|
print(y.shape)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test()
|