BU_Stoch_pool/models/Old/mylenet3.py
2020-06-12 01:42:08 -07:00

238 lines
8 KiB
Python

'''LeNet in PyTorch.'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from .sconv2davg import SConv2dAvg
class MyLeNetNormal(nn.Module):#epoch 12s
def __init__(self):
super(MyLeNetNormal, self).__init__()
self.conv1 = nn.Conv2d(3, 200, 5, stride=1)
self.conv2 = nn.Conv2d(200, 400, 3, stride=1)
self.conv3 = nn.Conv2d(400, 800, 3, stride=1)
self.fc1 = nn.Linear(800, 10)
def forward(self, x, stoch=True):
_,_,h0,w0 = x.shape
out = F.relu(self.conv1(x))
_,_,h1,w1 = out.shape
out = F.avg_pool2d(out,2,ceil_mode=True)
out = F.relu(self.conv2(out))
_,_,h2,w2 = out.shape
out = F.avg_pool2d(out,2,ceil_mode=True)
out = F.relu(self.conv3(out))
out = F.avg_pool2d(out,4,ceil_mode=True)
out = out.view(out.size(0), -1 )
out = (self.fc1(out))
return out
def savg_pool2d(x,size,ceil_mode=False):
b,c,h,w = x.shape
device = x.device
if ceil_mode:
out_h = math.ceil(h/size)
out_w = math.ceil(w/size)
else:
out_h = math.floor(h/size)
out_w = math.floor(w/size)
selh = torch.randint(size,(out_h,out_w), device=device)
#selh[:] = 0
rngh = torch.arange(0,h,size,device=x.device).view(-1,1)
selh = selh+rngh
selw = torch.randint(size,(out_h,out_w), device=device)
#selw[:] = 0
rngw = torch.arange(0,w,size,device=x.device)
selw = selw+rngw
newx = x[:,:, selh, selw]
return newx
def savg_pool2d_(x,size,ceil_mode=False):
b,c,h,w = x.shape
device = x.device
selh = torch.randint(size,(math.floor(h/size),math.floor(w/size)), device=device)
rngh = torch.arange(0,h,size, device=device).long().view(h/size,1).repeat(1,w/size).view(math.floor(h/size),math.floor(w/size))
selx = (selh+rngh).repeat(b,c,1,1)
selw = torch.randint(size,(math.floor(h/size),math.floor(w/size)), device=device)
rngw = torch.arange(0,w,size, device=device).long().view(1,h/size).repeat(h/size,1).view(math.floor(h/size),math.floor(w/size))
sely = (selw+rngw).repeat(b,c,1,1)
bv, cv ,hv, wv = torch.meshgrid([torch.arange(0,b), torch.arange(0,c),torch.arange(0,h/size),torch.arange(0,w/size)])
#x=x.view(b,c,h*w)
newx = x[bv,cv, selx, sely]
#ghdh
return newx
class MyLeNetSimNormal(nn.Module):#epoch 12s
def __init__(self):
super(MyLeNetSimNormal, self).__init__()
self.conv1 = nn.Conv2d(3, 200, 5, stride=1)
self.conv2 = nn.Conv2d(200, 400, 3, stride=1)
self.conv3 = nn.Conv2d(400, 800, 3, stride=1)
self.fc1 = nn.Linear(800, 10)
def forward(self, x, stoch=True):
#stoch=True
out = F.relu(self.conv1(x))
if stoch:
out = savg_pool2d(out,2,ceil_mode=True)
else:
out = F.avg_pool2d(out,2,ceil_mode=True)
out = F.relu(self.conv2(out))
if stoch:
out = savg_pool2d(out,2,ceil_mode=True)
else:
out = F.avg_pool2d(out,2,ceil_mode=True)
out = F.relu(self.conv3(out))
if stoch:
out = savg_pool2d(out,4,ceil_mode=True)
else:
out = F.avg_pool2d(out,4,ceil_mode=True)
out = out.view(out.size(0), -1 )
out = (self.fc1(out))
return out
class MyLeNetStride(nn.Module):#epoch 6s
def __init__(self):
super(MyLeNetStride, self).__init__()
self.conv1 = nn.Conv2d(3, 200, 5, stride=2)
self.conv2 = nn.Conv2d(200, 400, 3, stride=2)
self.conv3 = nn.Conv2d(400, 800, 3, stride=4)
self.fc1 = nn.Linear(800, 10)
def forward(self, x, stoch=True):
out = F.relu(self.conv1(x))
out = F.relu(self.conv2(out))
out = F.relu(self.conv3(out))
out = out.view(out.size(0), -1 )
out = (self.fc1(out))
return out
class MyLeNetMatNormal(nn.Module):#epach 21s
def __init__(self):
super(MyLeNetMatNormal, self).__init__()
self.conv1 = SConv2dAvg(3, 200, 5, stride=1)
self.conv2 = SConv2dAvg(200, 400, 3, stride=1)
self.conv3 = SConv2dAvg(400, 800, 3, stride=1)
self.fc1 = nn.Linear(800, 10)
def forward(self, x, stoch=True):
_,_,h0,w0 = x.shape
out = F.relu(self.conv1(x))
out = F.avg_pool2d(out,2,ceil_mode=True)
_,_,h1,w1 = out.shape
out = F.relu(self.conv2(out))
out = F.avg_pool2d(out,2,ceil_mode=True)
_,_,h2,w2 = out.shape
out = F.relu(self.conv3(out))
out = F.avg_pool2d(out,4,ceil_mode=True)
out = out.view(out.size(0), -1 )
out = (self.fc1(out))
if 1:
comp = 0
comp+=self.conv1.comp(h0,w0)
comp+=self.conv2.comp(h1,w1)
comp+=self.conv3.comp(h2,w2)
self.comp = comp/1000000
return out
class MyLeNetMatStoch(nn.Module):#epoch 17s
def __init__(self):
super(MyLeNetMatStoch, self).__init__()
self.conv1 = SConv2dAvg(3, 200, 5, stride=2,ceil_mode=True)
self.conv2 = SConv2dAvg(200, 400, 3, stride=2,ceil_mode=True)
self.conv3 = SConv2dAvg(400, 800, 3, stride=4,ceil_mode=True)
self.fc1 = nn.Linear(800, 10)
def forward(self, x, stoch=True):
# if stoch:
_,_,h0,w0=x.shape
out = F.relu(self.conv1(x,stoch=stoch))
_,_,h1,w1=out.shape
out = F.relu(self.conv2(out,stoch=stoch))
_,_,h2,w2=out.shape
out = F.relu(self.conv3(out,stoch=stoch))
# else:
# out = F.relu(self.conv1(x,stoch=True,stride=1))
# out = F.avg_pool2d(out,2,ceil_mode=True)
# out = F.relu(self.conv2(out,stoch=True,stride=1))
# out = F.avg_pool2d(out,2,ceil_mode=True)
# out = F.relu(self.conv3(out,stoch=True,stride=1))
# out = F.avg_pool2d(out,4,ceil_mode=True)
out = out.view(out.size(0), -1 )
out = self.fc1(out)
#Estimate computation
if 1:
comp = 0
comp+=self.conv1.comp(h0,w0)
comp+=self.conv2.comp(h1,w1)
comp+=self.conv3.comp(h2,w2)
self.comp = comp/1000000
return out
class MyLeNetMatStochBU(nn.Module):#epoch 11s
def __init__(self):
super(MyLeNetMatStochBU, self).__init__()
self.conv1 = SConv2dAvg(3, 200, 5, stride=2,ceil_mode=True)
self.conv2 = SConv2dAvg(200, 400, 3, stride=2,ceil_mode=True)
self.conv3 = SConv2dAvg(400, 800, 3, stride=4,ceil_mode=True)
self.fc1 = nn.Linear(800, 10)
def forward(self, x, stoch=True):
#get sizes
h0,w0 = x.shape[2],x.shape[3]
h1,w1 = self.conv1.get_size(h0,w0)
h2,w2 = self.conv2.get_size(h1,w1)
h3,w3 = self.conv3.get_size(h2,w2)
# print('Shapes :')
# print('0', h0, w0)
# print('1', h1, w1)
# print('2', h2, w2)
# print('3', h3, w3)
#sample BU
# mask3 = torch.ones(h3,w3).cuda()
mask3 = torch.ones((h3,w3), device=x.device)
selh3,selw3,mask2 = self.conv3.sample(h2,w2,mask=mask3)
selh2,selw2,mask1 = self.conv2.sample(h1,w1,mask=mask2)
selh1,selw1,mask0 = self.conv1.sample(h0,w0,mask=mask1)
#forward
if stoch:
out = F.relu(self.conv1(x,selh1,selw1,mask1,stoch=stoch))
out = F.relu(self.conv2(out,selh2,selw2,mask2,stoch=stoch))
out = F.relu(self.conv3(out,selh3,selw3,mask3,stoch=stoch))
else:
out = F.relu(self.conv1(x,stoch=True,stride=1))
out = F.avg_pool2d(out,2,ceil_mode=True)
out = F.relu(self.conv2(out,stoch=True,stride=1))
out = F.avg_pool2d(out,2,ceil_mode=True)
out = F.relu(self.conv3(out,stoch=True,stride=1))
out = F.avg_pool2d(out,4,ceil_mode=True)
out = out.view(out.size(0), -1 )
out = (self.fc1(out))
#Estimate computation
if 1:
comp = 0
comp+=self.conv1.comp(h0,w0,mask1)
comp+=self.conv2.comp(h1,w1,mask2)
comp+=self.conv3.comp(h2,w2,mask3)
self.comp = comp.item()/1000000
return out