BU_Stoch_pool/models/Old/mylenet.py
2020-06-12 01:42:08 -07:00

71 lines
2.5 KiB
Python

'''LeNet in PyTorch.'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class MyLeNet(nn.Module):
def __init__(self):
super(MyLeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def savg_pool2d(self,x,size):
b,c,h,w = x.shape
selh = torch.LongTensor(h/size,w/size).random_(0, size)
rngh = torch.arange(0,h,size).long().view(h/size,1).repeat(1,w/size).view(h/size,w/size)
selx = (selh+rngh).repeat(b,c,1,1)
selw = torch.LongTensor(h/size,w/size).random_(0, size)
rngw = torch.arange(0,w,size).long().view(1,h/size).repeat(h/size,1).view(h/size,w/size)
sely = (selw+rngw).repeat(b,c,1,1)
bv, cv ,hv, wv = torch.meshgrid([torch.arange(0,b), torch.arange(0,c),torch.arange(0,h/size),torch.arange(0,w/size)])
#x=x.view(b,c,h*w)
newx = x[bv,cv, selx, sely]
#ghdh
return newx
def ssoftmax_pool2d(self,x,size,idx):
b,c,h,w = x.shape
w = wdataset[idx]
selh = torch.LongTensor(h/size,w/size).random_(0, size)
rngh = torch.arange(0,h,size).long().view(h/size,1).repeat(1,w/size).view(h/size,w/size)
selx = (selh+rngh).repeat(b,c,1,1)
selw = torch.LongTensor(h/size,w/size).random_(0, size)
rngw = torch.arange(0,w,size).long().view(1,h/size).repeat(h/size,1).view(h/size,w/size)
sely = (selw+rngw).repeat(b,c,1,1)
bv, cv ,hv, wv = torch.meshgrid([torch.arange(0,b), torch.arange(0,c),torch.arange(0,h/size),torch.arange(0,w/size)])
#x=x.view(b,c,h*w)
newx = x[bv,cv, selx, sely]
#ghdh
return newx
def mavg_pool2d(self,x,size):
b,c,h,w = x.shape
#newx=(x[:,:,0::2,0::2]+x[:,:,1::2,0::2]+x[:,:,0::2,1::2]+x[:,:,1::2,1::2])/4
newx=(x[:,:,0::2,0::2])
return newx
def forward(self, x, stoch=True):
if self.training==False:
stoch=False
out = F.relu(self.conv1(x))
if stoch:
out = self.savg_pool2d(out, 2)
else:
out = F.avg_pool2d(out, 2)
out = F.relu(self.conv2(out))
if stoch:
out = self.savg_pool2d(out, 2)
else:
out = F.avg_pool2d(out, 2)
out = out.view(out.size(0), -1)
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
return out