BU_Stoch_pool/models/myresnet4.py

213 lines
7.7 KiB
Python

'''ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from .stochsim import savg_pool2d
from .stoch import *
class SAvg_Pool2d(nn.Module):
def __init__(self, stride=1, padding=0, dilation=1, groups=1,ceil_mode=True,bias=False,mode='s'):
super(SAvg_Pool2d, self).__init__()
self.stride = stride
self.mode = mode
self.ceil_mode = ceil_mode
def forward(self, x,stoch = True):
out = savg_pool2d(x, self.stride, mode = self.mode,ceil_mode = self.ceil_mode)
return out
stochmode = 'stoch'#'sim'#'stride''stoch'''
finalstochpool = True
simmode = 'sbc'
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1,pool=1):
super(BasicBlock, self).__init__()
if stochmode=='' or stride==1:
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
elif stochmode=='stride':
if finalstochpool:
stride = stride*pool
self.conv1 = SConv2dStride(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
elif stochmode=='sim':
if finalstochpool:
stride = stride*pool
self.conv1 = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=1, bias=False),
SAvg_Pool2d(stride, mode = simmode,ceil_mode = True)
)
elif stochmode=='stoch':
if finalstochpool:
stride = stride*pool
self.conv1 = SConv2dAvg(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
if stochmode=='stoch':
if pool!=1 and finalstochpool:
self.conv2 = SConv2dAvg(planes, planes, kernel_size=3,
stride=pool, padding=1, bias=False)
else:
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
else:
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
if stochmode=='stride':
self.shortcut = nn.Sequential(
SConv2dStride(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
elif stochmode=='stoch':
self.shortcut = nn.Sequential(
SConv2dAvg(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
elif stochmode=='sim':
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=1, bias=False),
SAvg_Pool2d(stride, mode = simmode,ceil_mode = True),
nn.BatchNorm2d(self.expansion*planes)
)
elif stochmode=='':
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
#only basic block has been updated!!!
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
#self.conv1 = SConv2dStride(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = SConv2dStride(planes, planes, kernel_size=3,stride=stride, padding=1, bias=False)
#self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = SConv2dStride(planes, self.expansion*planes, kernel_size=1, bias=False)
#self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
#nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
SConv2dStride(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10,stoch=False):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2,pool=4)
self.linear = nn.Linear(512*block.expansion, num_classes)
self.stoch = stoch
def _make_layer(self, block, planes, num_blocks, stride, pool=1):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride,pool))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x ,stoch = True):
#if self.training==False:
# stoch=False
#stoch=True
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
#if self.stoch:
if stochmode=='':
if not(finalstochpool):
#if stochmode == '':
out = F.avg_pool2d(out, 4)
else:
out = savg_pool2d(out, 4, mode = simmode)
else:
if not(finalstochpool):
out = F.avg_pool2d(out, 4)
# else:
# if stoch:
# out = savg_pool2d(out, 4, mode = 's')
# else:
# out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def MyResNet18(stoch=False):
return ResNet(BasicBlock, [2, 2, 2, 2],stoch=stoch)
def ResNet34():
return ResNet(BasicBlock, [3, 4, 6, 3])
def MyResNet50():
return ResNet(Bottleneck, [3, 4, 6, 3])
def ResNet101():
return ResNet(Bottleneck, [3, 4, 23, 3])
def ResNet152():
return ResNet(Bottleneck, [3, 8, 36, 3])
def test():
net = ResNet18()
y = net(torch.randn(1, 3, 32, 32))
print(y.size())
# test()