mirror of
https://github.com/AntoineHX/BU_Stoch_pool.git
synced 2025-05-03 17:20:45 +02:00
213 lines
7.7 KiB
Python
213 lines
7.7 KiB
Python
'''ResNet in PyTorch.
|
|
|
|
For Pre-activation ResNet, see 'preact_resnet.py'.
|
|
|
|
Reference:
|
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
|
|
Deep Residual Learning for Image Recognition. arXiv:1512.03385
|
|
'''
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .stochsim import savg_pool2d
|
|
from .stoch import *
|
|
|
|
|
|
|
|
class SAvg_Pool2d(nn.Module):
|
|
def __init__(self, stride=1, padding=0, dilation=1, groups=1,ceil_mode=True,bias=False,mode='s'):
|
|
super(SAvg_Pool2d, self).__init__()
|
|
self.stride = stride
|
|
self.mode = mode
|
|
self.ceil_mode = ceil_mode
|
|
|
|
def forward(self, x,stoch = True):
|
|
out = savg_pool2d(x, self.stride, mode = self.mode,ceil_mode = self.ceil_mode)
|
|
return out
|
|
|
|
stochmode = 'stoch'#'sim'#'stride''stoch'''
|
|
finalstochpool = True
|
|
simmode = 'sbc'
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, in_planes, planes, stride=1,pool=1):
|
|
super(BasicBlock, self).__init__()
|
|
|
|
if stochmode=='' or stride==1:
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
elif stochmode=='stride':
|
|
if finalstochpool:
|
|
stride = stride*pool
|
|
self.conv1 = SConv2dStride(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
elif stochmode=='sim':
|
|
if finalstochpool:
|
|
stride = stride*pool
|
|
self.conv1 = nn.Sequential(
|
|
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=1, bias=False),
|
|
SAvg_Pool2d(stride, mode = simmode,ceil_mode = True)
|
|
)
|
|
elif stochmode=='stoch':
|
|
if finalstochpool:
|
|
stride = stride*pool
|
|
self.conv1 = SConv2dAvg(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
if stochmode=='stoch':
|
|
if pool!=1 and finalstochpool:
|
|
self.conv2 = SConv2dAvg(planes, planes, kernel_size=3,
|
|
stride=pool, padding=1, bias=False)
|
|
else:
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
|
|
stride=1, padding=1, bias=False)
|
|
else:
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
|
|
stride=1, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
|
|
self.shortcut = nn.Sequential()
|
|
if stride != 1 or in_planes != self.expansion*planes:
|
|
if stochmode=='stride':
|
|
self.shortcut = nn.Sequential(
|
|
SConv2dStride(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(self.expansion*planes)
|
|
)
|
|
elif stochmode=='stoch':
|
|
self.shortcut = nn.Sequential(
|
|
SConv2dAvg(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(self.expansion*planes)
|
|
)
|
|
elif stochmode=='sim':
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=1, bias=False),
|
|
SAvg_Pool2d(stride, mode = simmode,ceil_mode = True),
|
|
nn.BatchNorm2d(self.expansion*planes)
|
|
)
|
|
elif stochmode=='':
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(self.expansion*planes)
|
|
)
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = self.bn2(self.conv2(out))
|
|
out += self.shortcut(x)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
#only basic block has been updated!!!
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
super(Bottleneck, self).__init__()
|
|
#self.conv1 = SConv2dStride(in_planes, planes, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = SConv2dStride(planes, planes, kernel_size=3,stride=stride, padding=1, bias=False)
|
|
#self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,stride=stride, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv3 = SConv2dStride(planes, self.expansion*planes, kernel_size=1, bias=False)
|
|
#self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
|
|
|
|
self.shortcut = nn.Sequential()
|
|
if stride != 1 or in_planes != self.expansion*planes:
|
|
self.shortcut = nn.Sequential(
|
|
#nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
|
|
SConv2dStride(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(self.expansion*planes)
|
|
)
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = F.relu(self.bn2(self.conv2(out)))
|
|
out = self.bn3(self.conv3(out))
|
|
out += self.shortcut(x)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
def __init__(self, block, num_blocks, num_classes=10,stoch=False):
|
|
super(ResNet, self).__init__()
|
|
self.in_planes = 64
|
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
|
|
stride=1, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2,pool=4)
|
|
self.linear = nn.Linear(512*block.expansion, num_classes)
|
|
self.stoch = stoch
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride, pool=1):
|
|
strides = [stride] + [1]*(num_blocks-1)
|
|
layers = []
|
|
for stride in strides:
|
|
layers.append(block(self.in_planes, planes, stride,pool))
|
|
self.in_planes = planes * block.expansion
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x ,stoch = True):
|
|
#if self.training==False:
|
|
# stoch=False
|
|
#stoch=True
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = self.layer1(out)
|
|
out = self.layer2(out)
|
|
out = self.layer3(out)
|
|
out = self.layer4(out)
|
|
#if self.stoch:
|
|
if stochmode=='':
|
|
if not(finalstochpool):
|
|
#if stochmode == '':
|
|
out = F.avg_pool2d(out, 4)
|
|
else:
|
|
out = savg_pool2d(out, 4, mode = simmode)
|
|
else:
|
|
if not(finalstochpool):
|
|
out = F.avg_pool2d(out, 4)
|
|
# else:
|
|
# if stoch:
|
|
# out = savg_pool2d(out, 4, mode = 's')
|
|
# else:
|
|
# out = F.avg_pool2d(out, 4)
|
|
out = out.view(out.size(0), -1)
|
|
out = self.linear(out)
|
|
return out
|
|
|
|
|
|
|
|
def MyResNet18(stoch=False):
|
|
return ResNet(BasicBlock, [2, 2, 2, 2],stoch=stoch)
|
|
|
|
|
|
def ResNet34():
|
|
return ResNet(BasicBlock, [3, 4, 6, 3])
|
|
|
|
|
|
def MyResNet50():
|
|
return ResNet(Bottleneck, [3, 4, 6, 3])
|
|
|
|
|
|
def ResNet101():
|
|
return ResNet(Bottleneck, [3, 4, 23, 3])
|
|
|
|
|
|
def ResNet152():
|
|
return ResNet(Bottleneck, [3, 8, 36, 3])
|
|
|
|
|
|
def test():
|
|
net = ResNet18()
|
|
y = net(torch.randn(1, 3, 32, 32))
|
|
print(y.size())
|
|
|
|
# test()
|