'''LeNet in PyTorch.''' import torch import torch.nn as nn import torch.nn.functional as F class MyLeNet(nn.Module): def __init__(self): super(MyLeNet, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16*5*5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def savg_pool2d(self,x,size): b,c,h,w = x.shape selh = torch.LongTensor(h/size,w/size).random_(0, size) rngh = torch.arange(0,h,size).long().view(h/size,1).repeat(1,w/size).view(h/size,w/size) selx = (selh+rngh).repeat(b,c,1,1) selw = torch.LongTensor(h/size,w/size).random_(0, size) rngw = torch.arange(0,w,size).long().view(1,h/size).repeat(h/size,1).view(h/size,w/size) sely = (selw+rngw).repeat(b,c,1,1) bv, cv ,hv, wv = torch.meshgrid([torch.arange(0,b), torch.arange(0,c),torch.arange(0,h/size),torch.arange(0,w/size)]) #x=x.view(b,c,h*w) newx = x[bv,cv, selx, sely] #ghdh return newx def ssoftmax_pool2d(self,x,size,idx): b,c,h,w = x.shape w = wdataset[idx] selh = torch.LongTensor(h/size,w/size).random_(0, size) rngh = torch.arange(0,h,size).long().view(h/size,1).repeat(1,w/size).view(h/size,w/size) selx = (selh+rngh).repeat(b,c,1,1) selw = torch.LongTensor(h/size,w/size).random_(0, size) rngw = torch.arange(0,w,size).long().view(1,h/size).repeat(h/size,1).view(h/size,w/size) sely = (selw+rngw).repeat(b,c,1,1) bv, cv ,hv, wv = torch.meshgrid([torch.arange(0,b), torch.arange(0,c),torch.arange(0,h/size),torch.arange(0,w/size)]) #x=x.view(b,c,h*w) newx = x[bv,cv, selx, sely] #ghdh return newx def mavg_pool2d(self,x,size): b,c,h,w = x.shape #newx=(x[:,:,0::2,0::2]+x[:,:,1::2,0::2]+x[:,:,0::2,1::2]+x[:,:,1::2,1::2])/4 newx=(x[:,:,0::2,0::2]) return newx def forward(self, x, stoch=True): if self.training==False: stoch=False out = F.relu(self.conv1(x)) if stoch: out = self.savg_pool2d(out, 2) else: out = F.avg_pool2d(out, 2) out = F.relu(self.conv2(out)) if stoch: out = self.savg_pool2d(out, 2) else: out = F.avg_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc3(out) return out