'''ResNet in PyTorch. For Pre-activation ResNet, see 'preact_resnet.py'. Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 ''' import torch import torch.nn as nn import torch.nn.functional as F from .stoch import SConv2dAvg class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, stoch=False): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.stoch=stoch if stoch: self.conv2 = SConv2dAvg(planes, planes, kernel_size=3, stride=1, padding=1) #bias=False) #Bias !? else : self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) if self.stoch: _,_,h1,w1=out.shape h2,w2 = self.conv2.get_size(h1,w1) mask2 = torch.ones((h2,w2), device=x.device) selh2,selw2,mask1 = self.conv2.sample(h1,w1,mask=mask2) out = self.bn2(self.conv2(out,selh2,selw2,mask2,stoch=self.stoch)) else: out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10,stoch=False): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, stoch=stoch) self.linear = nn.Linear(512*block.expansion, num_classes) self.stoch = stoch # if self.stoch: # old_conv = self.layer4[-1].conv2 # self.layer4[-1].conv2=SConv2dAvg(old_conv.weight.shape[0], # old_conv.weight.shape[1], # old_conv.kernel_size, # stride=4)#old_conv.stride[0]) #Bias !? def _make_layer(self, block, planes, num_blocks, stride, stoch=False): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion if stoch: layers[-1]=block(self.in_planes, planes, stride, stoch=True) return nn.Sequential(*layers) def forward(self, x , stoch = False): #if self.training==False: # stoch=False print(stoch) # self.layer1.stoch=stoch # self.layer2.stoch=stoch # self.layer3.stoch=stoch self.layer4[-1].stoch=stoch out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) # print(out.shape) out = F.avg_pool2d(out, 4) # print(out.shape) out = out.view(out.size(0), -1) out = self.linear(out) return out def MyResNet18(stoch=True): return ResNet(BasicBlock, [2, 2, 2, 2],stoch=stoch) def ResNet34(): return ResNet(BasicBlock, [3, 4, 6, 3]) def MyResNet50(): return ResNet(Bottleneck, [3, 4, 6, 3]) def ResNet101(): return ResNet(Bottleneck, [3, 4, 23, 3]) def ResNet152(): return ResNet(Bottleneck, [3, 8, 36, 3]) def test(): net = ResNet18() y = net(torch.randn(1, 3, 32, 32)) print(y.size()) # test()