'''LeNet in PyTorch.''' import torch import torch.nn as nn import torch.nn.functional as F class MyLeNet2(nn.Module): def __init__(self): super(MyLeNet2, self).__init__() self.conv1 = nn.Conv2d(3, 60, 5) self.conv2 = nn.Conv2d(60, 160, 5) self.fc1 = nn.Linear(160*5*5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) # Vanilla Convolution def myconv2d(self, input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): batch_size, in_channels, in_h, in_w = input.shape out_channels, in_channels, kh, kw = weight.shape out_h = in_h-2*(int(kh)/2) out_w = in_w-2*(int(kw)/2) unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=dilation, padding=padding, stride=stride) inp_unf = unfold(input)#.view(batch_size,in_channels*kh*kw,out_h,out_w) if bias is None: out_unf = inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()).transpose(1, 2) else: out_unf = (inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()) + bias).transpose(1, 2) out = out_unf.view(batch_size, out_channels, out_h, out_w) return out def myconv2d_avg(self, input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1,size=2): batch_size, in_channels, in_h, in_w = input.shape out_channels, in_channels, kh, kw = weight.shape out_h = in_h-2*(int(kh)/2) out_w = in_w-2*(int(kw)/2) unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=dilation, padding=padding, stride=stride) inp_unf = unfold(input).view(batch_size,in_channels*kh*kw,out_h,out_w) sel_h = torch.LongTensor(out_h/size,out_w/size).random_(0, size)#.cuda() rng_h = sel_h + torch.arange(0,out_h,size).long()#.cuda() sel_w = torch.LongTensor(out_h/size,out_w/size).random_(0, size)#.cuda() rng_w = sel_w+torch.arange(0,out_w,size).long()#.cuda() inp_unf = inp_unf[:,:,rng_h,rng_w].view(batch_size,in_channels*kh*kw,out_h/size*out_w/size) #unfold_avg = torch.nn.Unfold(kernel_size=(1, 1), dilation=1, padding=0, stride=2) if bias is None: out_unf = inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()).transpose(1, 2) else: out_unf = (inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()) + bias).transpose(1, 2) out = out_unf.view(batch_size, out_channels, out_h/size, out_w/size).contiguous() return out def savg_pool2d(self,x,size): b,c,h,w = x.shape selh = torch.LongTensor(h/size,w/size).random_(0, size) rngh = torch.arange(0,h,size).long().view(h/size,1).repeat(1,w/size).view(h/size,w/size) selx = (selh+rngh).repeat(b,c,1,1) selw = torch.LongTensor(h/size,w/size).random_(0, size) rngw = torch.arange(0,w,size).long().view(1,h/size).repeat(h/size,1).view(h/size,w/size) sely = (selw+rngw).repeat(b,c,1,1) bv, cv ,hv, wv = torch.meshgrid([torch.arange(0,b), torch.arange(0,c),torch.arange(0,h/size),torch.arange(0,w/size)]) #x=x.view(b,c,h*w) newx = x[bv,cv, selx, sely] #ghdh return newx def ssoftmax_pool2d(self,x,size,idx): b,c,h,w = x.shape w = wdataset[idx] selh = torch.LongTensor(h/size,w/size).random_(0, size) rngh = torch.arange(0,h,size).long().view(h/size,1).repeat(1,w/size).view(h/size,w/size) selx = (selh+rngh).repeat(b,c,1,1) selw = torch.LongTensor(h/size,w/size).random_(0, size) rngw = torch.arange(0,w,size).long().view(1,h/size).repeat(h/size,1).view(h/size,w/size) sely = (selw+rngw).repeat(b,c,1,1) bv, cv ,hv, wv = torch.meshgrid([torch.arange(0,b), torch.arange(0,c),torch.arange(0,h/size),torch.arange(0,w/size)]) #x=x.view(b,c,h*w) newx = x[bv,cv, selx, sely] #ghdh return newx def mavg_pool2d(self,x,size): b,c,h,w = x.shape #newx=(x[:,:,0::2,0::2]+x[:,:,1::2,0::2]+x[:,:,0::2,1::2]+x[:,:,1::2,1::2])/4 newx=(x[:,:,0::2,0::2]) return newx def forward(self, x, stoch=True): if self.training==False: stoch=False #out = F.relu(self.conv1(x)) out = F.relu(self.myconv2d(x, self.conv1.weight, bias=self.conv1.bias)) if stoch: out = self.savg_pool2d(out, 2) else: out = F.avg_pool2d(out, 2) #out = F.relu(self.conv2(out)) if 0: out = F.relu(self.myconv2d_avg(out, self.conv2.weight, bias=self.conv2.bias,size=2)) else: #out = F.relu(self.conv2(out)) out = F.relu(self.myconv2d(out, self.conv2.weight, bias=self.conv2.bias)) out = F.avg_pool2d(out, 2) #if stoch: # out = self.savg_pool2d(out, 2) #else: # out = F.avg_pool2d(out, 2) out = out.view(out.size(0), -1 ) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc3(out) return out