Namespace(batch=128, dataset='CIFAR10', epochs=10, lr=0.05, net='MyLeNetMatNormalNoceil', postfix='_noCrop_k3', res_folder='res/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 35.84 / 47.42 Loss : 1.73 / 1.45 Time: 247.71314711589366 --------- Epoch: 1 Acc : 53.34 / 60.40 Loss : 1.30 / 1.14 Time: 495.9195477189496 --------- Epoch: 2 Acc : 60.44 / 60.80 Loss : 1.11 / 1.08 Time: 743.7779585365206 --------- Epoch: 3 Acc : 65.48 / 65.42 Loss : 0.98 / 0.98 Time: 991.7510572513565 --------- Epoch: 4 Acc : 69.41 / 69.60 Loss : 0.87 / 0.86 Time: 1239.6623603589833 --------- Epoch: 5 Acc : 72.88 / 71.52 Loss : 0.78 / 0.80 Time: 1487.751311905682 --------- Epoch: 6 Acc : 75.24 / 73.46 Loss : 0.71 / 0.76 Time: 1735.6824928615242 --------- Epoch: 7 Acc : 77.73 / 74.89 Loss : 0.64 / 0.72 Time: 1983.8558715265244 --------- Epoch: 8 Acc : 79.20 / 77.12 Loss : 0.60 / 0.66 Time: 2231.74981981609 --------- Epoch: 9 Acc : 80.25 / 77.54 Loss : 0.57 / 0.65 Time: 2479.908313873224 --------- Best Acc : 77.54 Training time (min): 41.33180533062356 Log :" res/log/MyLeNetMatNormalNoceil-10epochs_noCrop_k3.json " saved ! Plot :" res/MyLeNetMatNormalNoceil-10epochs_noCrop_k3 " saved ! real 41m40.414s user 32m50.590s sys 14m15.666s