Namespace(batch=128, dataset='CIFAR10', epochs=50, k=4, lr=0.05, net='MyLeNetMatStochNoceil', postfix='__k4_2', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 25.53 / 31.27 Loss : 1.98 / 1.83 Time: 138.69305455219 --------- Epoch: 5 Acc : 49.02 / 37.01 Loss : 1.41 / 1.75 Time: 832.2641551829875 --------- Epoch: 10 Acc : 56.74 / 39.72 Loss : 1.22 / 1.72 Time: 1526.109748011455 --------- Epoch: 15 Acc : 60.87 / 42.71 Loss : 1.11 / 1.59 Time: 2219.8009980134666 --------- Epoch: 20 Acc : 63.56 / 39.88 Loss : 1.03 / 1.67 Time: 2913.56171762757 --------- Epoch: 25 Acc : 66.38 / 41.00 Loss : 0.95 / 1.56 Time: 3607.454514555633 --------- Epoch: 30 Acc : 68.79 / 42.87 Loss : 0.88 / 1.56 Time: 4301.280980648473 --------- Epoch: 35 Acc : 71.48 / 43.23 Loss : 0.81 / 1.58 Time: 4995.14941327367 --------- Epoch: 40 Acc : 73.54 / 46.15 Loss : 0.75 / 1.57 Time: 5689.165943298489 --------- Epoch: 45 Acc : 74.85 / 46.25 Loss : 0.72 / 1.57 Time: 6383.023234537803 --------- Best Acc : 47.23 Training time (min): 115.63643312873319 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochNoceil-50epochs__k4_2.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochNoceil-50epochs__k4_2 " saved ! real 115m51.013s user 106m48.549s sys 38m31.911s