Namespace(batch=128, dataset='CIFAR10', epochs=50, k=1, lr=0.05, net='MyLeNetMatStochNoceil', postfix='__k1_3', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 25.31 / 32.71 Loss : 1.97 / 1.80 Time: 23.04006605129689 --------- Epoch: 5 Acc : 47.91 / 37.56 Loss : 1.44 / 1.63 Time: 137.0359864262864 --------- Epoch: 10 Acc : 54.32 / 38.65 Loss : 1.28 / 1.77 Time: 250.97384090255946 --------- Epoch: 15 Acc : 59.07 / 35.07 Loss : 1.15 / 1.64 Time: 365.1462406516075 --------- Epoch: 20 Acc : 61.75 / 33.37 Loss : 1.07 / 1.84 Time: 479.1790603613481 --------- Epoch: 25 Acc : 64.43 / 40.65 Loss : 1.00 / 1.69 Time: 593.1814860291779 --------- Epoch: 30 Acc : 67.26 / 43.06 Loss : 0.92 / 1.60 Time: 707.3531251512468 --------- Epoch: 35 Acc : 69.03 / 42.53 Loss : 0.88 / 1.67 Time: 821.4921944644302 --------- Epoch: 40 Acc : 71.71 / 42.02 Loss : 0.81 / 1.68 Time: 935.5345202535391 --------- Epoch: 45 Acc : 72.13 / 45.46 Loss : 0.79 / 1.57 Time: 1049.5861575081944 --------- Best Acc : 46.35 Training time (min): 19.014818465150892 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochNoceil-50epochs__k1_3.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochNoceil-50epochs__k1_3 " saved ! real 19m13.464s user 39m30.936s sys 5m26.684s