Namespace(batch=128, dataset='CIFAR10', epochs=50, k=3, lr=0.05, net='MyLeNetMatStochBUNoceil', postfix='__k3_2', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 22.47 / 28.87 Loss : 2.07 / 1.87 Time: 73.43172709643841 --------- Epoch: 5 Acc : 40.79 / 36.61 Loss : 1.62 / 1.77 Time: 440.08674016874284 --------- Epoch: 10 Acc : 46.63 / 31.72 Loss : 1.48 / 1.78 Time: 805.6908490704373 --------- Epoch: 15 Acc : 50.33 / 36.32 Loss : 1.38 / 1.65 Time: 1171.5075644087046 --------- Epoch: 20 Acc : 53.78 / 35.36 Loss : 1.28 / 1.70 Time: 1537.8829597318545 --------- Epoch: 25 Acc : 55.99 / 40.15 Loss : 1.22 / 1.60 Time: 1903.7469382034615 --------- Epoch: 30 Acc : 58.90 / 46.06 Loss : 1.15 / 1.45 Time: 2269.2510411664844 --------- Epoch: 35 Acc : 61.37 / 41.17 Loss : 1.09 / 1.70 Time: 2634.5049549862742 --------- Epoch: 40 Acc : 62.56 / 41.62 Loss : 1.05 / 1.69 Time: 2999.9693449428305 --------- Epoch: 45 Acc : 64.12 / 44.62 Loss : 1.01 / 1.56 Time: 3365.504422593862 --------- Best Acc : 47.18 Training time (min): 60.982219754951075 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochBUNoceil-50epochs__k3_2.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochBUNoceil-50epochs__k3_2 " saved ! real 61m11.800s user 71m34.006s sys 17m52.119s