Namespace(batch=128, dataset='CIFAR10', epochs=50, k=4, lr=0.05, net='MyLeNetMatStochBUNoceil', postfix='__k4_3', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 22.84 / 23.02 Loss : 2.06 / 2.02 Time: 109.14865664206445 --------- Epoch: 5 Acc : 41.31 / 34.38 Loss : 1.61 / 1.74 Time: 651.8169922940433 --------- Epoch: 10 Acc : 47.19 / 34.92 Loss : 1.46 / 1.75 Time: 1196.2202987512574 --------- Epoch: 15 Acc : 51.14 / 40.63 Loss : 1.35 / 1.61 Time: 1740.0807679975405 --------- Epoch: 20 Acc : 53.28 / 37.40 Loss : 1.30 / 1.66 Time: 2285.094068882987 --------- Epoch: 25 Acc : 56.24 / 44.48 Loss : 1.22 / 1.50 Time: 2828.706437432207 --------- Epoch: 30 Acc : 58.89 / 46.33 Loss : 1.15 / 1.50 Time: 3372.260067921132 --------- Epoch: 35 Acc : 61.42 / 43.65 Loss : 1.09 / 1.54 Time: 3917.1703928979114 --------- Epoch: 40 Acc : 63.16 / 45.52 Loss : 1.04 / 1.52 Time: 4460.238603447564 --------- Epoch: 45 Acc : 63.59 / 44.41 Loss : 1.03 / 1.61 Time: 5004.6891468744725 --------- Best Acc : 46.61 Training time (min): 90.65389749701134 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochBUNoceil-50epochs__k4_3.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochBUNoceil-50epochs__k4_3 " saved ! real 90m54.391s user 89m26.614s sys 28m46.091s