Namespace(batch=128, dataset='CIFAR10', epochs=50, k=1, lr=0.05, net='MyLeNetMatStochBUNoceil', postfix='__k1_3', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 22.71 / 22.38 Loss : 2.05 / 1.98 Time: 23.942733087576926 --------- Epoch: 5 Acc : 39.64 / 32.36 Loss : 1.65 / 1.86 Time: 144.20551797002554 --------- Epoch: 10 Acc : 45.79 / 33.74 Loss : 1.50 / 1.76 Time: 264.1239112522453 --------- Epoch: 15 Acc : 49.18 / 37.71 Loss : 1.40 / 1.66 Time: 382.70462130755186 --------- Epoch: 20 Acc : 52.63 / 41.70 Loss : 1.32 / 1.58 Time: 501.70173474773765 --------- Epoch: 25 Acc : 55.52 / 42.16 Loss : 1.24 / 1.55 Time: 620.2704349383712 --------- Epoch: 30 Acc : 57.60 / 42.07 Loss : 1.19 / 1.61 Time: 740.046815501526 --------- Epoch: 35 Acc : 59.83 / 40.80 Loss : 1.13 / 1.64 Time: 860.0331608653069 --------- Epoch: 40 Acc : 60.89 / 41.76 Loss : 1.09 / 1.63 Time: 980.0542129781097 --------- Epoch: 45 Acc : 62.60 / 42.83 Loss : 1.05 / 1.61 Time: 1099.9315661629662 --------- Best Acc : 47.46 Training time (min): 19.902773757139222 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochBUNoceil-50epochs__k1_3.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochBUNoceil-50epochs__k1_3 " saved ! real 20m6.443s user 41m56.250s sys 4m44.181s