Namespace(batch=128, dataset='CIFAR10', epochs=50, k=4, lr=0.05, net='MyLeNetMatNormalNoceil', postfix='__k4_1', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 35.99 / 47.12 Loss : 1.73 / 1.43 Time: 413.15663176588714 --------- Epoch: 5 Acc : 72.51 / 69.89 Loss : 0.78 / 0.87 Time: 2480.58620422706 --------- Epoch: 10 Acc : 80.56 / 76.70 Loss : 0.56 / 0.67 Time: 4549.522261521779 --------- Epoch: 15 Acc : 85.25 / 79.85 Loss : 0.43 / 0.59 Time: 6618.715358470567 --------- Epoch: 20 Acc : 88.85 / 80.16 Loss : 0.33 / 0.58 Time: 8688.104032479227 --------- Epoch: 25 Acc : 91.80 / 82.65 Loss : 0.25 / 0.51 Time: 10757.39982889127 --------- Epoch: 30 Acc : 94.70 / 83.66 Loss : 0.17 / 0.50 Time: 12826.700856998563 --------- Epoch: 35 Acc : 97.03 / 83.37 Loss : 0.11 / 0.54 Time: 14895.382152607664 --------- Epoch: 40 Acc : 98.66 / 84.33 Loss : 0.07 / 0.51 Time: 16965.023936793208 --------- Epoch: 45 Acc : 99.53 / 84.55 Loss : 0.05 / 0.52 Time: 19034.066288430244 --------- Best Acc : 84.77 Training time (min): 344.79890690402436 Log :" res/benchmark_NoCeil/log/MyLeNetMatNormalNoceil-50epochs__k4_1.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatNormalNoceil-50epochs__k4_1 " saved ! real 345m2.785s user 255m9.074s sys 118m22.763s