import torch import torch.nn as nn import torch.nn.functional as F import math class SConv2dAvg(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,ceil_mode=True): super(SConv2dAvg, self).__init__() conv = nn.Conv2d(in_channels, out_channels, kernel_size) self.deconv = nn.ConvTranspose2d(1, 1, kernel_size, 1, padding=0, output_padding=0, groups=1, bias=False, dilation=1, padding_mode='zeros') nn.init.constant_(self.deconv.weight, 1) self.pooldeconv = nn.ConvTranspose2d(1, 1, kernel_size=stride,padding=0,stride=stride, output_padding=0, groups=1, bias=False, dilation=1, padding_mode='zeros') nn.init.constant_(self.pooldeconv.weight, 1) self.weight = nn.Parameter(conv.weight) self.bias = nn.Parameter(conv.bias) self.stride = stride self.dilation = dilation self.padding = padding self.kernel_size = kernel_size self.ceil_mode = ceil_mode def forward(self, input, selh=-torch.ones(1,1), selw=-torch.ones(1,1), mask=-torch.ones(1,1),stoch=False,stride=-1): device=input.device if stride==-1: stride = self.stride #stoch=True if stoch==False: stride=1 #test with real average pooling batch_size, in_channels, in_h, in_w = input.shape out_channels, in_channels, kh, kw = self.weight.shape afterconv_h = in_h-(kh-1) #size after conv afterconv_w = in_w-(kw-1) if self.ceil_mode: out_h = math.ceil(afterconv_h/stride) out_w = math.ceil(afterconv_w/stride) else: out_h = math.floor(afterconv_h/stride) out_w = math.floor(afterconv_w/stride) unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=self.dilation, padding=self.padding, stride=1) inp_unf = unfold(input) if stride!=1: inp_unf = inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h,afterconv_w) if selh[0,0]==-1: resth = (out_h*stride)-afterconv_h restw = (out_w*stride)-afterconv_w selh = torch.randint(stride,(out_h,out_w), device=device) selw = torch.randint(stride,(out_h,out_w), device=device) # print(selh.shape) if resth!=0: # Cas : (stride-resth)=0 ? selh[-1,:]=selh[-1,:]%(stride-resth);selh[:,-1]=selh[:,-1]%(stride-restw) selw[-1,:]=selw[-1,:]%(stride-resth);selw[:,-1]=selw[:,-1]%(stride-restw) rng_h = selh + torch.arange(0,out_h*stride,stride,device=device).view(-1,1) rng_w = selw + torch.arange(0,out_w*stride,stride,device=device) if mask[0,0]==-1: inp_unf = inp_unf[:,:,rng_h,rng_w].view(batch_size,in_channels*kh*kw,-1) else: inp_unf = inp_unf[:,:,rng_h[mask>0],rng_w[mask>0]] #Matrix mul if self.bias is None: out_unf = inp_unf.transpose(1, 2).matmul(self.weight.view(self.weight.size(0), -1).t()).transpose(1, 2) else: out_unf = (inp_unf.transpose(1, 2).matmul(self.weight.view(self.weight.size(0), -1).t()) + self.bias).transpose(1, 2) if stride==1 or mask[0,0]==-1: out = out_unf.view(batch_size,out_channels,out_h,out_w) #Fold if stoch==False: out = F.avg_pool2d(out,self.stride,ceil_mode=True) else: out = torch.zeros(batch_size, out_channels,out_h,out_w,device=device) out[:,:,mask>0] = out_unf return out def comp(self,h,w,mask=-torch.ones(1,1)): out_h = (h-(self.kernel_size))/self.stride out_w = (w-(self.kernel_size))/self.stride if self.ceil_mode: out_h = math.ceil(out_h) out_w = math.ceil(out_w) else: out_h = math.floor(out_h) out_w = math.florr(out_w) if mask[0,0]==-1: comp = self.weight.numel()*out_h*out_w else: comp = self.weight.numel()*(mask>0).sum() return comp def sample(self,h,w,mask): ''' h, w : forward input shape mask : mask of output used in computation ''' stride = self.stride out_channels, in_channels, kh, kw = self.weight.shape device=mask.device afterconv_h = h-(kh-1) #Pk afterconv ? afterconv_w = w-(kw-1) if self.ceil_mode: out_h = math.ceil(afterconv_h/stride) out_w = math.ceil(afterconv_w/stride) else: out_h = math.floor(afterconv_h/stride) out_w = math.floor(afterconv_w/stride) selh = torch.randint(stride,(out_h,out_w), device=device) selw = torch.randint(stride,(out_h,out_w), device=device) resth = (out_h*stride)-afterconv_h #simplement egale a stride-1, non ? restw = (out_w*stride)-afterconv_w # print('resth', resth, self.stride) if resth!=0: selh[-1,:]=selh[-1,:]%(stride-resth);selh[:,-1]=selh[:,-1]%(stride-restw) selw[-1,:]=selw[-1,:]%(stride-resth);selw[:,-1]=selw[:,-1]%(stride-restw) maskh = (out_h)*stride maskw = (out_w)*stride rng_h = selh + torch.arange(0,out_h*stride,stride,device=device).view(-1,1) rng_w = selw + torch.arange(0,out_w*stride,stride,device=device) # rng_w = selw + torch.arange(0,out_w*self.stride,self.stride,device=device).view(-1,1) nmask = torch.zeros((maskh,maskw),device=device) nmask[rng_h,rng_w] = 1 #rmask = mask * nmask dmask = self.pooldeconv(mask.float().view(1,1,mask.shape[0],mask.shape[1])) rmask = nmask * dmask #rmask = rmask[:,:,:out_h,:out_w] fmask = self.deconv(rmask) fmask = fmask[0,0] return selh,selw,fmask.long() def get_size(self,h,w): # newh=(h-(self.kernel_size-1)+(self.stride-1))/self.stride # neww=(w-(self.kernel_size-1)+(self.stride-1))/self.stride # print(newh,neww) newh=math.floor(((h + 2*self.padding - self.dilation*(self.kernel_size-1) - 1)/self.stride) + 1) neww=math.floor(((w + 2*self.padding - self.dilation*(self.kernel_size-1) - 1)/self.stride) + 1) return newh, neww