Namespace(batch=128, dataset='CIFAR10', epochs=10, lr=0.05, net='MyLeNetMatStochBUNoceil', postfix='_noCrop_k3', res_folder='res/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 22.73 / 30.49 Loss : 2.06 / 1.90 Time: 73.46249075420201 --------- Epoch: 1 Acc : 30.11 / 30.61 Loss : 1.87 / 1.79 Time: 146.35232928954065 --------- Epoch: 2 Acc : 34.14 / 33.30 Loss : 1.77 / 1.73 Time: 219.46285958588123 --------- Epoch: 3 Acc : 38.18 / 34.64 Loss : 1.68 / 1.74 Time: 292.7825370589271 --------- Epoch: 4 Acc : 40.50 / 37.73 Loss : 1.62 / 1.68 Time: 366.0361840762198 --------- Epoch: 5 Acc : 43.22 / 38.42 Loss : 1.54 / 1.61 Time: 439.2800999926403 --------- Epoch: 6 Acc : 46.57 / 39.54 Loss : 1.47 / 1.61 Time: 513.1152702141553 --------- Epoch: 7 Acc : 48.72 / 38.11 Loss : 1.41 / 1.69 Time: 586.3596808109432 --------- Epoch: 8 Acc : 50.07 / 37.34 Loss : 1.37 / 1.67 Time: 660.0147361075506 --------- Epoch: 9 Acc : 51.24 / 40.30 Loss : 1.35 / 1.60 Time: 733.1694793645293 --------- Best Acc : 40.30 Training time (min): 12.219491492429126 Log :" res/log/MyLeNetMatStochBUNoceil-10epochs_noCrop_k3.json " saved ! Plot :" res/MyLeNetMatStochBUNoceil-10epochs_noCrop_k3 " saved ! real 12m34.154s user 14m9.534s sys 3m43.740s