Namespace(batch=128, dataset='CIFAR10', epochs=50, k=1, lr=0.05, net='MyLeNetMatStochNoceil', postfix='__k1_2', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 25.65 / 27.44 Loss : 1.98 / 1.93 Time: 22.87828525621444 --------- Epoch: 5 Acc : 47.19 / 34.34 Loss : 1.45 / 1.73 Time: 136.54613589681685 --------- Epoch: 10 Acc : 54.83 / 34.87 Loss : 1.26 / 1.79 Time: 250.1823681294918 --------- Epoch: 15 Acc : 58.61 / 36.11 Loss : 1.16 / 1.67 Time: 364.1771142780781 --------- Epoch: 20 Acc : 61.51 / 41.69 Loss : 1.07 / 1.61 Time: 477.91743985097855 --------- Epoch: 25 Acc : 64.63 / 42.91 Loss : 1.00 / 1.60 Time: 591.6240369612351 --------- Epoch: 30 Acc : 66.87 / 42.92 Loss : 0.94 / 1.60 Time: 705.5203553121537 --------- Epoch: 35 Acc : 69.64 / 40.97 Loss : 0.86 / 1.71 Time: 819.437248964794 --------- Epoch: 40 Acc : 71.34 / 45.05 Loss : 0.82 / 1.57 Time: 933.206932798028 --------- Epoch: 45 Acc : 72.89 / 46.70 Loss : 0.78 / 1.52 Time: 1047.1215672474355 --------- Best Acc : 47.16 Training time (min): 18.968624996906147 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochNoceil-50epochs__k1_2.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochNoceil-50epochs__k1_2 " saved ! real 19m10.751s user 39m32.089s sys 5m24.696s