Namespace(batch=128, dataset='CIFAR10', epochs=50, k=1, lr=0.05, net='MyLeNetMatStochNoceil', postfix='__k1_1', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 25.68 / 28.52 Loss : 1.97 / 1.88 Time: 22.80050491821021 --------- Epoch: 5 Acc : 47.17 / 33.95 Loss : 1.45 / 1.80 Time: 136.88718870654702 --------- Epoch: 10 Acc : 54.93 / 35.39 Loss : 1.26 / 1.72 Time: 250.9757927497849 --------- Epoch: 15 Acc : 58.73 / 41.05 Loss : 1.15 / 1.68 Time: 364.77219730988145 --------- Epoch: 20 Acc : 61.29 / 36.65 Loss : 1.09 / 1.75 Time: 478.69057740084827 --------- Epoch: 25 Acc : 64.54 / 38.35 Loss : 1.00 / 1.87 Time: 592.9431653441861 --------- Epoch: 30 Acc : 67.13 / 38.56 Loss : 0.93 / 1.71 Time: 707.10416641552 --------- Epoch: 35 Acc : 69.71 / 42.13 Loss : 0.86 / 1.68 Time: 821.3001165790483 --------- Epoch: 40 Acc : 71.33 / 42.99 Loss : 0.81 / 1.67 Time: 935.0861265612766 --------- Epoch: 45 Acc : 72.50 / 44.22 Loss : 0.78 / 1.64 Time: 1049.0620342679322 --------- Best Acc : 46.14 Training time (min): 18.99982411774496 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochNoceil-50epochs__k1_1.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochNoceil-50epochs__k1_1 " saved ! real 19m12.168s user 40m45.219s sys 5m20.754s