Namespace(batch=128, dataset='CIFAR10', epochs=50, k=2, lr=0.05, net='MyLeNetMatStochNoceil', postfix='__k2_1', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 25.34 / 29.78 Loss : 1.98 / 1.85 Time: 47.96411813329905 --------- Epoch: 5 Acc : 48.65 / 42.37 Loss : 1.42 / 1.55 Time: 287.80597504321486 --------- Epoch: 10 Acc : 56.07 / 38.00 Loss : 1.23 / 1.70 Time: 527.6232785293832 --------- Epoch: 15 Acc : 59.94 / 36.03 Loss : 1.12 / 1.76 Time: 767.5103654088452 --------- Epoch: 20 Acc : 62.89 / 43.49 Loss : 1.04 / 1.52 Time: 1007.4215006893501 --------- Epoch: 25 Acc : 65.90 / 43.04 Loss : 0.96 / 1.55 Time: 1247.2988663418218 --------- Epoch: 30 Acc : 68.11 / 41.09 Loss : 0.91 / 1.59 Time: 1487.2040980625898 --------- Epoch: 35 Acc : 71.02 / 40.45 Loss : 0.82 / 1.66 Time: 1727.0953295668587 --------- Epoch: 40 Acc : 72.37 / 46.05 Loss : 0.78 / 1.51 Time: 1966.9677904183045 --------- Epoch: 45 Acc : 73.65 / 46.43 Loss : 0.75 / 1.54 Time: 2206.9109367653728 --------- Best Acc : 47.12 Training time (min): 39.980595599099374 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochNoceil-50epochs__k2_1.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochNoceil-50epochs__k2_1 " saved ! real 40m12.627s user 55m24.324s sys 12m21.461s