Namespace(batch=128, dataset='CIFAR10', epochs=50, k=3, lr=0.05, net='MyLeNetMatStochNoceil', postfix='__k3_2', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 26.23 / 24.77 Loss : 1.96 / 1.95 Time: 88.89952981937677 --------- Epoch: 5 Acc : 49.19 / 37.63 Loss : 1.41 / 1.69 Time: 533.3709430936724 --------- Epoch: 10 Acc : 56.72 / 39.58 Loss : 1.21 / 1.61 Time: 978.0299946693704 --------- Epoch: 15 Acc : 60.20 / 37.36 Loss : 1.11 / 1.73 Time: 1422.6836077561602 --------- Epoch: 20 Acc : 63.17 / 37.28 Loss : 1.03 / 1.73 Time: 1867.3761521866545 --------- Epoch: 25 Acc : 66.56 / 41.14 Loss : 0.95 / 1.61 Time: 2311.9993200674653 --------- Epoch: 30 Acc : 68.86 / 40.12 Loss : 0.89 / 1.72 Time: 2756.85310437344 --------- Epoch: 35 Acc : 71.20 / 45.03 Loss : 0.82 / 1.60 Time: 3201.5983270090073 --------- Epoch: 40 Acc : 73.10 / 43.67 Loss : 0.77 / 1.62 Time: 3646.298190155998 --------- Epoch: 45 Acc : 75.00 / 45.30 Loss : 0.72 / 1.58 Time: 4091.1723202215508 --------- Best Acc : 48.57 Training time (min): 74.11512494976633 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochNoceil-50epochs__k3_2.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochNoceil-50epochs__k3_2 " saved ! real 74m20.018s user 77m49.963s sys 24m34.997s