Namespace(batch=128, dataset='CIFAR10', epochs=50, k=3, lr=0.05, net='MyLeNetMatStochBUNoceil', postfix='__k3_1', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 22.43 / 31.52 Loss : 2.07 / 1.80 Time: 73.24458603095263 --------- Epoch: 5 Acc : 40.97 / 37.28 Loss : 1.61 / 1.74 Time: 439.50911753159016 --------- Epoch: 10 Acc : 46.77 / 45.71 Loss : 1.47 / 1.57 Time: 805.9838715335354 --------- Epoch: 15 Acc : 51.05 / 37.82 Loss : 1.36 / 1.66 Time: 1172.2754459958524 --------- Epoch: 20 Acc : 53.40 / 37.39 Loss : 1.29 / 1.69 Time: 1538.9271471500397 --------- Epoch: 25 Acc : 56.16 / 47.24 Loss : 1.22 / 1.48 Time: 1904.104914849624 --------- Epoch: 30 Acc : 58.15 / 40.97 Loss : 1.17 / 1.67 Time: 2269.141853663139 --------- Epoch: 35 Acc : 61.22 / 42.66 Loss : 1.09 / 1.60 Time: 2635.261180281639 --------- Epoch: 40 Acc : 63.04 / 43.25 Loss : 1.04 / 1.60 Time: 3000.9633819106966 --------- Epoch: 45 Acc : 63.74 / 44.18 Loss : 1.02 / 1.63 Time: 3366.7220483692363 --------- Best Acc : 47.24 Training time (min): 60.98429485363886 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochBUNoceil-50epochs__k3_1.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochBUNoceil-50epochs__k3_1 " saved ! real 61m11.687s user 70m18.044s sys 18m52.141s