Namespace(batch=128, dataset='CIFAR10', epochs=50, k=1, lr=0.05, net='MyLeNetMatStochBUNoceil', postfix='__k1_1', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 22.40 / 33.33 Loss : 2.07 / 1.88 Time: 23.69926338084042 --------- Epoch: 5 Acc : 39.01 / 32.53 Loss : 1.66 / 1.82 Time: 142.7658422710374 --------- Epoch: 10 Acc : 45.48 / 38.35 Loss : 1.49 / 1.62 Time: 260.89411601331085 --------- Epoch: 15 Acc : 48.70 / 35.44 Loss : 1.41 / 1.69 Time: 379.99177754390985 --------- Epoch: 20 Acc : 52.10 / 38.83 Loss : 1.33 / 1.69 Time: 497.3336850358173 --------- Epoch: 25 Acc : 54.84 / 42.42 Loss : 1.26 / 1.55 Time: 616.1871792878956 --------- Epoch: 30 Acc : 57.42 / 40.18 Loss : 1.19 / 1.60 Time: 734.6347392667085 --------- Epoch: 35 Acc : 60.00 / 43.08 Loss : 1.12 / 1.55 Time: 852.3725217897445 --------- Epoch: 40 Acc : 61.69 / 43.45 Loss : 1.07 / 1.55 Time: 971.9417355190963 --------- Epoch: 45 Acc : 62.51 / 45.85 Loss : 1.05 / 1.53 Time: 1090.8980515552685 --------- Best Acc : 46.76 Training time (min): 19.73898232462816 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochBUNoceil-50epochs__k1_1.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochBUNoceil-50epochs__k1_1 " saved ! real 19m56.378s user 41m16.163s sys 4m49.607s