Namespace(batch=128, dataset='CIFAR10', epochs=50, k=2, lr=0.05, net='MyLeNetMatStochBUNoceil', postfix='__k2_3', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 23.07 / 27.72 Loss : 2.04 / 1.89 Time: 43.24283229280263 --------- Epoch: 5 Acc : 40.82 / 34.26 Loss : 1.62 / 1.78 Time: 260.49624280724674 --------- Epoch: 10 Acc : 46.79 / 32.58 Loss : 1.47 / 1.81 Time: 476.04811190254986 --------- Epoch: 15 Acc : 49.99 / 35.99 Loss : 1.39 / 1.74 Time: 692.3408845262602 --------- Epoch: 20 Acc : 53.41 / 35.56 Loss : 1.30 / 1.71 Time: 908.646314191632 --------- Epoch: 25 Acc : 55.78 / 40.94 Loss : 1.23 / 1.63 Time: 1123.2973771356046 --------- Epoch: 30 Acc : 58.41 / 44.97 Loss : 1.16 / 1.52 Time: 1339.4196774363518 --------- Epoch: 35 Acc : 60.69 / 43.89 Loss : 1.10 / 1.55 Time: 1554.9195355875418 --------- Epoch: 40 Acc : 62.63 / 46.52 Loss : 1.05 / 1.48 Time: 1770.575025911443 --------- Epoch: 45 Acc : 63.64 / 44.60 Loss : 1.03 / 1.56 Time: 1986.1898049293086 --------- Best Acc : 46.52 Training time (min): 35.97862558372629 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochBUNoceil-50epochs__k2_3.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochBUNoceil-50epochs__k2_3 " saved ! real 36m11.005s user 53m35.069s sys 9m56.397s