Namespace(batch=128, dataset='CIFAR10', epochs=50, k=2, lr=0.05, net='MyLeNetMatNormalNoceil', postfix='__k2_1', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 36.99 / 46.90 Loss : 1.71 / 1.47 Time: 123.3850756874308 --------- Epoch: 5 Acc : 71.92 / 70.74 Loss : 0.81 / 0.84 Time: 740.4402446337044 --------- Epoch: 10 Acc : 79.88 / 76.11 Loss : 0.58 / 0.70 Time: 1357.5990120908245 --------- Epoch: 15 Acc : 84.43 / 80.63 Loss : 0.45 / 0.56 Time: 1975.4050657227635 --------- Epoch: 20 Acc : 88.04 / 80.34 Loss : 0.35 / 0.57 Time: 2593.1981341233477 --------- Epoch: 25 Acc : 91.30 / 82.08 Loss : 0.26 / 0.53 Time: 3211.109001107514 --------- Epoch: 30 Acc : 94.06 / 82.95 Loss : 0.19 / 0.51 Time: 3828.7535809641704 --------- Epoch: 35 Acc : 96.45 / 83.79 Loss : 0.13 / 0.50 Time: 4446.439873588271 --------- Epoch: 40 Acc : 98.28 / 84.44 Loss : 0.08 / 0.51 Time: 5064.219255410135 --------- Epoch: 45 Acc : 99.23 / 84.78 Loss : 0.06 / 0.51 Time: 5681.4778324710205 --------- Best Acc : 84.92 Training time (min): 102.92114744419231 Log :" res/benchmark_NoCeil/log/MyLeNetMatNormalNoceil-50epochs__k2_1.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatNormalNoceil-50epochs__k2_1 " saved ! real 103m8.605s user 98m5.937s sys 33m32.017s