Namespace(batch=128, dataset='CIFAR10', epochs=50, k=1, lr=0.05, net='MyLeNetMatNormalNoceil', postfix='__k1_1', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 35.43 / 48.21 Loss : 1.73 / 1.43 Time: 46.12261764425784 --------- Epoch: 5 Acc : 70.44 / 69.29 Loss : 0.85 / 0.87 Time: 276.4114668201655 --------- Epoch: 10 Acc : 78.80 / 76.67 Loss : 0.61 / 0.68 Time: 506.5132551435381 --------- Epoch: 15 Acc : 83.43 / 80.02 Loss : 0.48 / 0.58 Time: 736.7161982152611 --------- Epoch: 20 Acc : 86.87 / 80.73 Loss : 0.38 / 0.55 Time: 966.8520798627287 --------- Epoch: 25 Acc : 90.07 / 83.00 Loss : 0.30 / 0.51 Time: 1197.1624066643417 --------- Epoch: 30 Acc : 92.45 / 82.59 Loss : 0.23 / 0.52 Time: 1427.6633465271443 --------- Epoch: 35 Acc : 94.93 / 83.86 Loss : 0.17 / 0.48 Time: 1658.0701657654718 --------- Epoch: 40 Acc : 96.97 / 84.58 Loss : 0.12 / 0.48 Time: 1888.4067949829623 --------- Epoch: 45 Acc : 98.12 / 84.77 Loss : 0.09 / 0.49 Time: 2118.8804153930396 --------- Best Acc : 84.89 Training time (min): 38.38393786516972 Log :" res/benchmark_NoCeil/log/MyLeNetMatNormalNoceil-50epochs__k1_1.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatNormalNoceil-50epochs__k1_1 " saved ! real 38m36.671s user 52m22.204s sys 12m0.649s