import numpy as np import json, math, time, os if __name__ == "__main__": #Res print nb_run=3 accs = [] taccs = [] # aug_accs = [] # f1_max = [] # f1_min = [] # times = [] # mem = [] files = ["res/benchmark_NoCeil/log/MyLeNetMatStochBUNoceil-50epochs__k4_%s.json"%(str(run)) for run in range(1, nb_run+1)] for idx, file in enumerate(files): #legend+=str(idx)+'-'+file+'\n' with open(file) as json_file: data = json.load(json_file) # accs.append(data['Accuracy']) accs.append(max([x["test_acc"] for x in data])) taccs.append(max([x["train_acc"] for x in data])) # aug_accs.append(data['Aug_Accuracy'][1]) #times.append(data['Time'][0]) #mem.append(data['Memory'][1]) # acc_idx = [x['acc'] for x in data['Log']].index(data['Accuracy']) # f1_max.append(max(data['Log'][acc_idx]['f1'])*100) # f1_min.append(min(data['Log'][acc_idx]['f1'])*100) # print(idx, accs[-1]) print(files[0]) print("Acc : %.2f ~ %.2f"%(np.mean(accs), np.std(accs))) print("Acc train : %.2f ~ %.2f"%(np.mean(taccs), np.std(taccs))) # print("Acc : %.2f ~ %.2f / Aug_Acc %d: %.2f ~ %.2f"%(np.mean(accs), np.std(accs), data['Aug_Accuracy'][0], np.mean(aug_accs), np.std(aug_accs))) # print("F1 max : %.2f ~ %.2f / F1 min : %.2f ~ %.2f"%(np.mean(f1_max), np.std(f1_max), np.mean(f1_min), np.std(f1_min))) #print("Time (h): %.2f ~ %.2f"%(np.mean(times)/3600, np.std(times)/3600)) #print("Mem (MB): %d ~ %d"%(np.mean(mem), np.std(mem)))