Namespace(batch=128, dataset='CIFAR10', epochs=10, lr=0.05, net='MyLeNetMatStochNoceil', postfix='_noCrop_k3', res_folder='res/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 25.40 / 29.56 Loss : 1.99 / 1.83 Time: 88.82820883858949 --------- Epoch: 1 Acc : 35.13 / 32.19 Loss : 1.74 / 1.77 Time: 177.5576635012403 --------- Epoch: 2 Acc : 40.73 / 35.05 Loss : 1.61 / 1.76 Time: 266.2516449401155 --------- Epoch: 3 Acc : 45.58 / 38.76 Loss : 1.49 / 1.71 Time: 355.2165524791926 --------- Epoch: 4 Acc : 49.07 / 35.94 Loss : 1.41 / 1.71 Time: 443.9428597986698 --------- Epoch: 5 Acc : 52.32 / 32.03 Loss : 1.32 / 1.86 Time: 532.6662928508595 --------- Epoch: 6 Acc : 54.68 / 40.80 Loss : 1.26 / 1.59 Time: 621.3865936575457 --------- Epoch: 7 Acc : 58.03 / 41.34 Loss : 1.17 / 1.62 Time: 710.462741760537 --------- Epoch: 8 Acc : 59.08 / 44.26 Loss : 1.15 / 1.53 Time: 799.1782552432269 --------- Epoch: 9 Acc : 60.38 / 42.60 Loss : 1.11 / 1.58 Time: 887.9221545867622 --------- Best Acc : 44.26 Training time (min): 14.798702753568069 Log :" res/log/MyLeNetMatStochNoceil-10epochs_noCrop_k3.json " saved ! Plot :" res/MyLeNetMatStochNoceil-10epochs_noCrop_k3 " saved ! real 15m9.606s user 15m45.480s sys 4m48.638s