Namespace(batch=128, dataset='CIFAR10', epochs=50, k=4, lr=0.05, net='MyLeNetMatStochNoceil', postfix='__k4_3', res_folder='res/benchmark_NoCeil/', resume=False, scheduler='cosine', stoch=False, warmup_ep=5, warmup_mul=0) ==> Preparing data.. ==> Building model.. ==> Training model.. --------- Epoch: 0 Acc : 25.19 / 31.17 Loss : 1.99 / 1.84 Time: 138.68438915722072 --------- Epoch: 5 Acc : 48.85 / 40.39 Loss : 1.42 / 1.68 Time: 832.1555920224637 --------- Epoch: 10 Acc : 56.04 / 34.76 Loss : 1.23 / 1.76 Time: 1525.8188216267154 --------- Epoch: 15 Acc : 60.87 / 38.62 Loss : 1.10 / 1.81 Time: 2219.536086712964 --------- Epoch: 20 Acc : 63.73 / 40.78 Loss : 1.02 / 1.74 Time: 2913.3058100305498 --------- Epoch: 25 Acc : 66.55 / 39.24 Loss : 0.95 / 1.68 Time: 3607.307444162667 --------- Epoch: 30 Acc : 69.17 / 47.70 Loss : 0.88 / 1.48 Time: 4300.989568569697 --------- Epoch: 35 Acc : 71.81 / 41.68 Loss : 0.80 / 1.62 Time: 4994.865097979084 --------- Epoch: 40 Acc : 73.30 / 45.42 Loss : 0.76 / 1.55 Time: 5688.842534529977 --------- Epoch: 45 Acc : 74.59 / 46.82 Loss : 0.72 / 1.52 Time: 6382.720301232301 --------- Best Acc : 47.70 Training time (min): 115.63096341982795 Log :" res/benchmark_NoCeil/log/MyLeNetMatStochNoceil-50epochs__k4_3.json " saved ! Plot :" res/benchmark_NoCeil/MyLeNetMatStochNoceil-50epochs__k4_3 " saved ! real 115m50.643s user 105m32.016s sys 37m36.485s